Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
1.
Annu Rev Immunol ; 38: 171-202, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340577

ABSTRACT

Innate lymphocyte populations are emerging as key effectors in tissue homeostasis, microbial defense, and inflammatory skin disease. The cells are evolutionarily ancient and carry conserved principles of function, which can be achieved through shared or unique specific mechanisms. Recent technological and treatment advances have provided insight into heterogeneity within and between individuals and species. Similar pathways can extend through to adaptive lymphocytes, which softens the margins with innate lymphocyte populations and allows investigation of nonredundant pathways of immunity and inflammation that might be amenable to therapeutic intervention. Here, we review advances in understanding of innate lymphocyte biology with a focus on skin disease and the roles of commensal and pathogen responses and tissue homeostasis.


Subject(s)
Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Skin Diseases/etiology , Skin Diseases/metabolism , Animals , Biomarkers , Homeostasis , Host-Pathogen Interactions/immunology , Humans , Microbiota/immunology , Signal Transduction , Skin Diseases/pathology
2.
Cell ; 186(21): 4583-4596.e13, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37725977

ABSTRACT

The CD1 system binds lipid antigens for display to T cells. Here, we solved lipidomes for the four human CD1 antigen-presenting molecules, providing a map of self-lipid display. Answering a basic question, the detection of >2,000 CD1-lipid complexes demonstrates broad presentation of self-sphingolipids and phospholipids. Whereas peptide antigens are chemically processed, many lipids are presented in an unaltered form. However, each type of CD1 protein differentially edits the self-lipidome to show distinct capture motifs based on lipid length and chemical composition, suggesting general antigen display mechanisms. For CD1a and CD1d, lipid size matches the CD1 cleft volume. CD1c cleft size is more variable, and CD1b is the outlier, where ligands and clefts show an extreme size mismatch that is explained by uniformly seating two small lipids in one cleft. Furthermore, the list of compounds that comprise the integrated CD1 lipidome supports the ongoing discovery of lipid blockers and antigens for T cells.


Subject(s)
Antigens, CD1 , Lipids , Humans , Antigen Presentation , Antigens, CD1/chemistry , Antigens, CD1/metabolism , Lipidomics , Lipids/chemistry , T-Lymphocytes , Amino Acid Motifs
3.
Nat Immunol ; 25(5): 834-846, 2024 May.
Article in English | MEDLINE | ID: mdl-38561495

ABSTRACT

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Subject(s)
Antigens, CD , Apyrase , Integrin alpha Chains , Receptors, Antigen, T-Cell , Signal Transduction , Animals , Humans , Mice , Antigens, CD/metabolism , Antigens, CD/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Integrin alpha Chains/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology
4.
Nat Immunol ; 24(1): 110-122, 2023 01.
Article in English | MEDLINE | ID: mdl-36550321

ABSTRACT

Expressed on epidermal Langerhans cells, CD1a presents a range of self-lipid antigens found within the skin; however, the extent to which CD1a presents microbial ligands from bacteria colonizing the skin is unclear. Here we identified CD1a-dependent T cell responses to phosphatidylglycerol (PG), a ubiquitous bacterial membrane phospholipid, as well as to lysylPG, a modified PG, present in several Gram-positive bacteria and highly abundant in Staphylococcus aureus. The crystal structure of the CD1a-PG complex showed that the acyl chains were buried within the A'- and F'-pockets of CD1a, while the phosphoglycerol headgroup remained solvent exposed in the F'-portal and was available for T cell receptor contact. Using lysylPG and PG-loaded CD1a tetramers, we identified T cells in peripheral blood and in skin that respond to these lipids in a dose-dependent manner. Tetramer+CD4+ T cell lines secreted type 2 helper T cell cytokines in response to phosphatidylglycerols as well as to co-cultures of CD1a+ dendritic cells and Staphylococcus bacteria. The expansion in patients with atopic dermatitis of CD4+ CD1a-(lysyl)PG tetramer+ T cells suggests a response to lipids made by bacteria associated with atopic dermatitis and provides a link supporting involvement of PG-based lipid-activated T cells in atopic dermatitis pathogenesis.


Subject(s)
Dermatitis, Atopic , Humans , Skin , Langerhans Cells , Antigens, CD1 , Autoantigens/metabolism , Staphylococcus/metabolism , Phosphatidylglycerols
5.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Article in English | MEDLINE | ID: mdl-32887977

ABSTRACT

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Humans , Immunodominant Epitopes/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , United Kingdom , Viral Vaccines/immunology
6.
Nature ; 624(7992): 586-592, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38030732

ABSTRACT

A long-standing expectation is that large, dense and cosmopolitan areas support socioeconomic mixing and exposure among diverse individuals1-6. Assessing this hypothesis has been difficult because previous measures of socioeconomic mixing have relied on static residential housing data rather than real-life exposures among people at work, in places of leisure and in home neighbourhoods7,8. Here we develop a measure of exposure segregation that captures the socioeconomic diversity of these everyday encounters. Using mobile phone mobility data to represent 1.6 billion real-world exposures among 9.6 million people in the United States, we measure exposure segregation across 382 metropolitan statistical areas (MSAs) and 2,829 counties. We find that exposure segregation is 67% higher in the ten largest MSAs than in small MSAs with fewer than 100,000 residents. This means that, contrary to expectations, residents of large cosmopolitan areas have less exposure to a socioeconomically diverse range of individuals. Second, we find that the increased socioeconomic segregation in large cities arises because they offer a greater choice of differentiated spaces targeted to specific socioeconomic groups. Third, we find that this segregation-increasing effect is countered when a city's hubs (such as shopping centres) are positioned to bridge diverse neighbourhoods and therefore attract people of all socioeconomic statuses. Our findings challenge a long-standing conjecture in human geography and highlight how urban design can both prevent and facilitate encounters among diverse individuals.


Subject(s)
Cities , Social Network Analysis , Social Networking , Socioeconomic Factors , Urban Population , Humans , Cell Phone , Cities/statistics & numerical data , Housing/statistics & numerical data , Models, Theoretical , Residence Characteristics/statistics & numerical data , United States , Urban Population/statistics & numerical data
7.
Mol Cell Proteomics ; 23(6): 100770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641226

ABSTRACT

Inhalation of crystalline silica dust induces incurable lung damage, silicosis, and pulmonary fibrosis. However, the mechanisms of the lung injury remain poorly understood, with limited therapeutic options aside from lung transplantation. Posttranslational modifications can regulate the function of proteins and play an important role in studying disease mechanisms. To investigate changes in posttranslational modifications of proteins in silicosis, combined quantitative proteome, acetylome, and succinylome analyses were performed with lung tissues from silica-injured and healthy mice using liquid chromatography-mass spectrometry. Combined analysis was applied to the three omics datasets to construct a protein landscape. The acetylation and succinylation of the key transcription factor STAT1 were found to play important roles in the silica-induced pathophysiological changes. Modulating the acetylation level of STAT1 with geranylgeranylacetone effectively inhibited the progression of silicosis. This report revealed a comprehensive landscape of posttranslational modifications in silica-injured mouse and presented a novel therapeutic strategy targeting the posttranslational level for silica-induced lung diseases.


Subject(s)
Lysine , Protein Processing, Post-Translational , Proteome , STAT1 Transcription Factor , Silicosis , Animals , Silicosis/metabolism , Silicosis/drug therapy , Silicosis/pathology , STAT1 Transcription Factor/metabolism , Proteome/metabolism , Lysine/metabolism , Acetylation/drug effects , Mice , Silicon Dioxide , Lung/metabolism , Lung/drug effects , Lung/pathology , Mice, Inbred C57BL , Proteomics/methods , Male , Succinic Acid/metabolism
8.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38500170

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Hyperoxia , MicroRNAs , Rats , Animals , Cells, Cultured , Hyperoxia/metabolism , Inflammation , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Extracellular Vesicles/physiology , Fibrosis , Acute Lung Injury/therapy , Acute Lung Injury/metabolism
9.
Clin Exp Dermatol ; 49(5): 450-458, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38173286

ABSTRACT

The CD1 and MR1 protein families present lipid antigens and small molecules to T cells, complementing well-studied major histocompatibility complex-peptide mechanisms. The CD1a subtype is highly and continuously expressed within the skin, most notably on Langerhans cells, and has been demonstrated to present self and foreign lipids to T cells, highlighting its cutaneous sentinel role. Alteration of CD1a-dependent T-cell responses has recently been discovered to contribute to the pathogenesis of several inflammatory skin diseases. In this review, we overview the structure and role of CD1a and outline the current evidence implicating CD1a in the development of psoriasis, atopic dermatitis and allergic contact dermatitis.


Subject(s)
Antigens, CD1 , Skin Diseases , T-Lymphocytes , Humans , Antigens, CD1/metabolism , Antigens, CD1/immunology , Dermatitis, Allergic Contact/immunology , Dermatitis, Atopic/immunology , Langerhans Cells/immunology , Psoriasis/immunology , Skin/immunology , Skin/pathology , T-Lymphocytes/immunology , Skin Diseases/drug therapy , Skin Diseases/metabolism , Skin Diseases/pathology
10.
J Sci Food Agric ; 104(2): 698-706, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37653274

ABSTRACT

BACKGROUND: This research was to investigate the interaction mechanism between 2S albumin and 13S globulin (2S and 13S, the most important storage proteins in Tartary buckwheat seeds) and three phenols (rutin, quercetin and myricetin) regarding the structural and antioxidant properties of their complexes. RESULTS: There are differences in the binding affinity of phenols for 2S and 13S. Rutin had a higher binding affinity for 2S, myricetin had a higher binding affinity for 13S, and 13S exhibited a higher affinity toward phenols than did 2S. Binding with phenols significantly changed the secondary and tertiary structures of 2S and 13S, decreased the surface hydrophobic value and enhanced the antioxidant capacity. Molecular docking and isothermal titration calorimetry showed that the binding processes were spontaneous and that there were hydrogen bonds, hydrophobic bonds and van der Waals force interactions between phenols and proteins. CONCLUSION: These findings could provide meaningful guidance for the further application of buckwheat protein complex. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Fagopyrum , Antioxidants/chemistry , Phenols/chemistry , Fagopyrum/chemistry , Molecular Docking Simulation , Rutin , Binding Sites
11.
Am J Orthod Dentofacial Orthop ; 165(4): 458-470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38189707

ABSTRACT

INTRODUCTION: The mechanosensitive ion channel, Piezo1, is responsible for transducing mechanical stimuli into intracellular biochemical signals and has been identified within periodontal ligament cells (PDLCs). Nonetheless, the precise biologic function of Piezo1 in the regulation of alveolar bone remodeling by PDLCs during compressive forces remains unclear. Therefore, this study focused on elucidating the role of the Piezo1 channel in alveolar bone remodeling and uncovering its underlying mechanisms. METHODS: PDLCs were subjected to compressive force and Piezo1 inhibitors. Piezo1 and ß-catenin expressions were quantified by quantitative reverse transcription polymerase chain reaction and Western blot. The intracellular calcium concentration was measured using Fluo-8 AM staining. The osteogenic and osteoclastic activities were assessed using alkaline phosphatase staining, enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction, and Western blot. In vivo, orthodontic tooth movement was used to determine the effects of Piezo1 on alveolar bone remodeling. RESULTS: Piezo1 and activated ß-catenin expressions were upregulated under compressive force. Piezo1 inhibition reduced ß-catenin activation, osteogenic differentiation, and osteoclastic activities. ß-catenin knockdown reversed the increased osteogenic differentiation but had little impact on osteoclastic activities. In vivo, Piezo1 inhibition led to decreased tooth movement distance, accompanied by reduced ß-catenin activation and expression of osteogenic and osteoclastic markers on the compression side. CONCLUSIONS: The Piezo1 channel is a key mechanotransduction component of PDLCs that senses compressive force and activates ß-catenin to regulate alveolar bone remodeling.


Subject(s)
Osteogenesis , beta Catenin , Humans , beta Catenin/metabolism , Cells, Cultured , Mechanotransduction, Cellular , Periodontal Ligament , Bone Remodeling/physiology , Cell Differentiation/physiology
12.
Am J Respir Cell Mol Biol ; 68(2): 213-227, 2023 02.
Article in English | MEDLINE | ID: mdl-36227848

ABSTRACT

Progressive fibrosing interstitial lung diseases (PF-ILDs) result in high mortality and lack effective therapies. The pathogenesis of PF-ILDs involves macrophages driving inflammation and irreversible fibrosis. Fc-γ receptors (FcγRs) regulate macrophages and inflammation, but their roles in PF-ILDs remain unclear. We characterized the expression of FcγRs and found upregulated FcγRIIB in human and mouse lungs after exposure to silica. FcγRIIB deficiency aggravated lung dysfunction, inflammation, and fibrosis in silica-exposed mice. Using single-cell transcriptomics and in vitro experiments, FcγRIIB was found in alveolar macrophages, where it regulated the expression of fibrosis-related genes Spp1 and Ctss. In mice with macrophage-specific overexpression of FcγRIIB and in mice treated with adenovirus by intratracheal instillation to upregulate FcγRIIB, silica-induced functional and histological changes were ameliorated. Our data from three genetic models and a therapeutic model suggest that FcγRIIB plays a protective role that can be enhanced by adenoviral overexpression, representing a potential therapeutic strategy for PF-ILDs.


Subject(s)
Lung Diseases, Interstitial , Pneumonia , Humans , Animals , Mice , Adenoviridae/genetics , Adenoviridae/metabolism , Pneumonia/genetics , Inflammation/genetics , Inflammation/metabolism , Receptors, IgG/genetics , Receptors, IgG/metabolism , Fibrosis , Silicon Dioxide
13.
J Cell Mol Med ; 27(8): 1110-1130, 2023 04.
Article in English | MEDLINE | ID: mdl-36942326

ABSTRACT

This study tested the hypothesis that Jagged2/Notches promoted the endothelial-mesenchymal transition (endMT)-mediated pulmonary arterial hypertension (PAH) (i.e. induction by monocrotaline [MCT]/63 mg/kg/subcutaneous injection) through increasing the expression of GATA-binding factors which were inhibited by propylthiouracil (PTU) (i.e. 0.1% in water for daily drinking since Day 5 after PAH induction) in rodent. As compared with the control (i.e. HUVECs), the protein expressions of GATAs (3/4/6) and endMT markers (Snail/Zeb1/N-cadherin/vimentin/fibronectin/α-SMA/p-Smad2) were significantly reduced, whereas the endothelial-phenotype markers (CD31/E-cadherin) were significantly increased in silenced JAG2 gene or in silenced GATA3 gene of HUVECs (all p < 0.001). As compared with the control, the protein expressions of intercellular signallings (GATAs [3/4/6], Jagged1/2, notch1/2 and Snail/Zeb1/N-cadherin/vimentin/fibronectin/α-SMA/p-Smad2) were significantly upregulated in TGF-ß/monocrotaline-treated HUVECs that were significantly reversed by PTU treatment (all p < 0.001). By Day 42, the results of animal study demonstrated that the right-ventricular systolic-blood-pressure (RVSBP), RV weight (RVW) and lung injury/fibrotic scores were significantly increased in MCT group than sham-control (SC) that were reversed in MCT + PTU groups, whereas arterial oxygen saturation (%) and vasorelaxation/nitric oxide production of PA exhibited an opposite pattern of RVW among the groups (all p < 0.0001). The protein expressions of hypertrophic (ß-MHC)/pressure-overload (BNP)/oxidative-stress (NOX-1/NOX-2) biomarkers in RV and the protein expressions of intercellular signalling (GATAs3/4/6, Jagged1/2, notch1/2) and endMT markers (Snail/Zeb1/N-cadherin/vimentin/fibronectin/TGF-ß/α-SMA/p-Smad2) in lung parenchyma displayed an identical pattern of RVW among the groups (all p < 0.0001). Jagged-Notch-GATAs signalling, endMT markers and RVSBP that were increased in PAH were suppressed by PTU.


Subject(s)
Pulmonary Arterial Hypertension , Animals , Pulmonary Arterial Hypertension/genetics , Fibronectins , Vimentin , Up-Regulation , Receptors, Notch/genetics , Serrate-Jagged Proteins , Monocrotaline , Familial Primary Pulmonary Hypertension
14.
Int J Cancer ; 153(2): 352-363, 2023 07 15.
Article in English | MEDLINE | ID: mdl-36912241

ABSTRACT

EGFR exon 19 deletion (Del-19) comprises multiple advanced NSCLC subtypes. EGFR-tyrosine kinase inhibitor (TKI) efficacy and T790M acquisition in various Del-19 subtypes is unknown. We prospectively collected tissue samples from patients harboring NSCLC with Del-19 between 2006 and 2020. We evaluated EGFR-TKI treatment effectiveness among the different Del-19 subtypes. We collected 1391 NSCLC samples from 892 patients with Del-19, and the most common subtype was del E746-A750 (67.5%). 741 patients had taken first- or second-generation EGFR-TKIs. There were no significant differences in response rates between patients with different Del-19 subtypes (P = .630). Patients with indel E746 had the longest median PFS (14.6 months), but those with non-LRE deletions had the shortest PFS (8.9 months; P = .002). For OS analysis, patients with indel E746 also had the longest OS (34.1 months), but those with non-LRE deletions had the shortest OS (21.1 months; P = .046). Patients with different Del-19 subtypes showed no significant differences in the T790M acquisition rates (P = .443). Among the 151 patients with acquired T790M who received third-generation EGFR-TKIs, the Del-19 subtype was not associated with different RR and PFS. In vitro cellular viability and activation of the EGFR pathway analysis were consistent with the clinical findings. In conclusion, compared with del E746-A750, indel E746 was associated with longer PFS and OS, but the non-LRE subtype was correlated with shorter survival prognosis. There were no significant differences in the acquired T790M rate and treatment effectiveness of subsequent third-generation EGFR-TKIs between various Del-19 subgroups.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Treatment Outcome
15.
Anal Chem ; 95(39): 14600-14607, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37726976

ABSTRACT

An acetylcholinesterase (AChE) binding-based biosensor was developed for the ultrasensitive detection of organophosphate (OP) pesticides. The biosensor integrates the technique based on fiber-optic particle plasmon resonance detection and a synthetic AChE binding peptide conjugated with gold nanoparticles on the optical fiber surface via an AChE competitive binding assay. The OP pesticides present in the solution hinder the binding of AChE to the peptide on the biosensor by competing for the binding sites present in AChE. The limit of detection obtained for parathion using this method was observed to be 0.66 ppt (2.3 pM). This method shows a wide linear dynamic range of 6 orders. Furthermore, the use of the AChE binding peptide in the biosensor can better discriminate OPs against carbamates by using only a single biosensor. The practical application of this method was tested using spiked samples, which yielded good recovery and reproducibility. The spiked sample required minimal pretreatment before analysis; hence, this biosensor may also be used in the field.


Subject(s)
Biosensing Techniques , Insecticides , Metal Nanoparticles , Pesticides , Acetylcholinesterase/metabolism , Pesticides/analysis , Gold/chemistry , Reproducibility of Results , Metal Nanoparticles/chemistry , Organophosphorus Compounds/analysis , Insecticides/analysis , Organophosphates , Biosensing Techniques/methods
16.
Eur J Immunol ; 52(3): 511-524, 2022 03.
Article in English | MEDLINE | ID: mdl-34913478

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterized by Th17 responses. Recent evidence has identified Langerhans cells to have a key role in disease pathogenesis, with constitutive high expression of CD1a and capacity to present lipid antigens to T cells. Phospholipase A2 enzymes generate neolipid antigens for recognition by CD1a-reactive T cells; however, the broader enzymatic pathways of CD1a lipid ligand generation have not been thoroughly investigated. In this study, we used immunofluorescence of skin and ELISpot analyses of CD1a-reactive T cells to investigate the role of the lipase acyloxyacyl hydrolase (AOAH) in CD1a ligand generation with relevance to the pathogenesis of psoriasis. We found that the PLA2 activity of rAOAH leads to the activation of circulating CD1a auto-reactive T cells, leading to the production of IFN-γ and IL-22. Circulating AOAH-responsive CD1a-reactive T cells from patients with psoriasis showed elevated IL-22 production. We observed that AOAH is highly expressed in psoriatic lesions compared to healthy skin. Overall, these data present a role for AOAH in generating antigens that activate circulating lipid-specific CD1a-restricted T cells and, thus, contribute to psoriatic inflammation. These findings suggest that inhibition of PLA2 activity of AOAH may have therapeutic potential for individuals with psoriasis.


Subject(s)
Psoriasis , Carboxylic Ester Hydrolases , Humans , Interleukins , Ligands , Lipids , Phospholipases/metabolism , Skin , Interleukin-22
17.
PLoS Pathog ; 17(9): e1009804, 2021 09.
Article in English | MEDLINE | ID: mdl-34529726

ABSTRACT

Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , B-Lymphocytes/immunology , Biomarkers/blood , Blood Proteins/metabolism , Cohort Studies , Critical Illness/mortality , Female , Humans , Immunophenotyping , Influenza, Human/immunology , Lectins, C-Type/immunology , Lymphocyte Activation , Male , Middle Aged , Mucosal-Associated Invariant T Cells/immunology , Patient Acuity
18.
J Biomed Sci ; 30(1): 80, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726723

ABSTRACT

BACKGROUND: Metastasis is a multistep process involving the migration and invasion of cancer cells and is a hallmark of cancer malignancy. Long non-coding RNAs (lncRNAs) play critical roles in the regulation of metastasis. This study aims to elucidate the role of the lncRNA solute carrier organic anion transporter family member 4A1-antisense 1 (SLCO4A1-AS1) in metastasis and its underlying regulatory mechanisms. METHODS: A comprehensive analysis of the Gene Expression Omnibus (GEO) database were used to identify metastasis-associated lncRNAs. Transwell migration and invasion assays, and a tail vein-injection mouse model were used to assess the migration and invasion of cancer cells in vitro and in vivo, respectively. High-throughput screening methods, including MASS Spectrometry and RNA sequencing (RNA-seq), were used to identify the downstream targets of SLCO4A1-AS1. Reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blotting, RNA pull-down, RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH), and chromatin immunoprecipitation (ChIp) assays were conducted to identify and validate the underlying regulatory mechanisms of SLCO4A1-AS1. RESULTS: SLCO4A1-AS1 reduced cancer cell migration and invasion by disrupting cytoskeleton filaments, and was associated with longer overall survival in patients with lung adenocarcinoma. SLCO4A1-AS1 directly interacted with the DNA-binding protein, TOX High Mobility Group Box Family Member 4 (TOX4), to inhibit TOX4-induced migration and invasion. Furthermore, RNA-seq revealed that neurotensin receptor 1 (NTSR1) is a novel and convergent downstream target of SLCO4A1-AS1 and TOX4. Mechanistically, SLCO4A1-AS1 functions as a decoy of TOX4 by interrupting its interaction with the NTSR1 promoter and preventing NTSR1 transcription. Functionally, NTSR1 promotes cancer cell migration and invasion through cytoskeletal remodeling, and knockdown of NTSR1 significantly inhibits TOX4-induced migration and invasion. CONCLUSION: These findings demonstrated that SLCO4A1-AS1 antagonizes TOX4/NTSR1 signaling, underscoring its pivotal role in lung cancer cell migration and invasion. These findings hold promise for the development of novel therapeutic strategies targeting the SLCO4A1-AS1/TOX4/NTSR1 axis as a potential avenue for effective therapeutic intervention in lung cancer.


Subject(s)
Lung Neoplasms , RNA, Long Noncoding , Animals , Mice , RNA, Long Noncoding/genetics , In Situ Hybridization, Fluorescence , Lung Neoplasms/genetics , Signal Transduction/genetics , Lung
19.
Chem Rev ; 121(13): 8161-8233, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34143612

ABSTRACT

Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.

20.
BMC Infect Dis ; 23(1): 8, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36609233

ABSTRACT

BACKGROUND: Fungal empyema is an uncommon disease and is associated with a high mortality rate. Surgical intervention is suggested in stage II and III empyema. However, there were no studies that reported the outcomes of surgery for fungal empyema. METHODS: This study is a retrospective analysis in a single institute. Patients with empyema thoracis who underwent thoracoscopic decortication between January 2012 and December 2021 were included in the study. We separated the patients into a fungal empyema group and a bacterial empyema group according to culture results. We used 1:3 propensity score matching to reduce selection bias. RESULTS: There were 1197 empyema patients who received surgery. Of these, 575 patients showed positive culture results and were enrolled. Twenty-eight patients were allocated to the fungal empyema group, and the other 547 patients were placed in the bacterial empyema group. Fungal empyema showed significantly longer intensive care unit stay (16 days vs. 3 days, p = 0.002), longer median ventilator usage duration (20.5 days vs. 3 days, p = 0.002), longer hospital stay duration (40 days vs. 17.5 days, p < 0.001) and a higher 30-day mortality rate (21.4% vs. 5.9%, p < 0.001). Fungal empyema revealed significantly poorer 1-year survival rate than bacterial empyema before matching (p < 0.001) but without significant difference after matching. CONCLUSIONS: The fungal empyema patients had much worse surgical outcomes than the bacterial empyema patients. Advanced age and high Charlson Comorbidity Index score are independent predictors for poor prognosis. Prompt surgical intervention combined with the use of antifungal agents was the treatment choice for fungal empyema.


Subject(s)
Empyema, Pleural , Thoracic Surgery, Video-Assisted , Humans , Retrospective Studies , Treatment Outcome , Thoracic Surgery, Video-Assisted/adverse effects , Empyema, Pleural/drug therapy , Empyema, Pleural/surgery , Empyema, Pleural/microbiology , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL