ABSTRACT
The CD4-binding site (CD4bs) is a conserved epitope on HIV-1 envelope (Env) that can be targeted by protective broadly neutralizing antibodies (bnAbs). HIV-1 vaccines have not elicited CD4bs bnAbs for many reasons, including the occlusion of CD4bs by glycans, expansion of appropriate naive B cells with immunogens, and selection of functional antibody mutations. Here, we demonstrate that immunization of macaques with a CD4bs-targeting immunogen elicits neutralizing bnAb precursors with structural and genetic features of CD4-mimicking bnAbs. Structures of the CD4bs nAb bound to HIV-1 Env demonstrated binding angles and heavy-chain interactions characteristic of all known human CD4-mimicking bnAbs. Macaque nAb were derived from variable and joining gene segments orthologous to the genes of human VH1-46-class bnAb. This vaccine study initiated in primates the B cells from which CD4bs bnAbs can derive, accomplishing the key first step in the development of an effective HIV-1 vaccine.
Subject(s)
AIDS Vaccines , HIV-1 , Animals , Humans , Broadly Neutralizing Antibodies , CD4 Antigens , Cell Adhesion Molecules , HIV-1/physiology , Macaca , AIDS Vaccines/immunologyABSTRACT
A critical roadblock to HIV vaccine development is the inability to induce B cell lineages of broadly neutralizing antibodies (bnAbs) in humans. In people living with HIV-1, bnAbs take years to develop. The HVTN 133 clinical trial studied a peptide/liposome immunogen targeting B cell lineages of HIV-1 envelope (Env) membrane-proximal external region (MPER) bnAbs (NCT03934541). Here, we report MPER peptide-liposome induction of polyclonal HIV-1 B cell lineages of mature bnAbs and their precursors, the most potent of which neutralized 15% of global tier 2 HIV-1 strains and 35% of clade B strains with lineage initiation after the second immunization. Neutralization was enhanced by vaccine selection of improbable mutations that increased antibody binding to gp41 and lipids. This study demonstrates proof of concept for rapid vaccine induction of human B cell lineages with heterologous neutralizing activity and selection of antibody improbable mutations and outlines a path for successful HIV-1 vaccine development.
Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , B-Lymphocytes , HIV Antibodies , HIV-1 , Humans , AIDS Vaccines/immunology , HIV-1/immunology , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/virology , Cell Lineage , Liposomes , env Gene Products, Human Immunodeficiency Virus/immunology , Mutation , HIV Envelope Protein gp41/immunologyABSTRACT
Cell fate transitions involve rapid gene expression changes and global chromatin remodeling, yet the underlying regulatory pathways remain incompletely understood. Here, we identified the RNA-processing factor Nudt21 as a novel regulator of cell fate change using transcription-factor-induced reprogramming as a screening assay. Suppression of Nudt21 enhanced the generation of induced pluripotent stem cells, facilitated transdifferentiation into trophoblast stem cells, and impaired differentiation of myeloid precursors and embryonic stem cells, suggesting a broader role for Nudt21 in cell fate change. We show that Nudt21 directs differential polyadenylation of over 1,500 transcripts in cells acquiring pluripotency, although only a fraction changed protein levels. Remarkably, these proteins were strongly enriched for chromatin regulators, and their suppression neutralized the effect of Nudt21 during reprogramming. Collectively, our data uncover Nudt21 as a novel post-transcriptional regulator of cell fate and establish a direct, previously unappreciated link between alternative polyadenylation and chromatin signaling.
Subject(s)
Cellular Reprogramming , Chromatin Assembly and Disassembly , Cleavage And Polyadenylation Specificity Factor/metabolism , Polyadenylation , Signal Transduction , Animals , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Cleavage And Polyadenylation Specificity Factor/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , HEK293 Cells , Humans , MiceABSTRACT
HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in â¼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development.
Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Antibodies, Neutralizing/immunology , HIV Infections/immunology , AIDS Vaccines/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/physiology , Adult , B-Lymphocytes/immunology , Cell Line , Cohort Studies , Female , Gene Expression Profiling/methods , HIV Antibodies/immunology , HIV Infections/physiopathology , HIV-1/pathogenicity , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/physiology , Male , Middle AgedABSTRACT
Increasing grain yield is a major goal of breeders due to the rising global demand for food. We previously reported that the miR397-LACCASE (OsLAC) module regulates brassinosteroid (BR) signaling and grain yield in rice (Oryza sativa). However, the precise roles of laccase enzymes in the BR pathway remain unclear. Here, we report that OsLAC controls grain yield by preventing the turnover of TRANSTHYRETIN-LIKE (OsTTL), a negative regulator of BR signaling. Overexpressing OsTTL decreased BR sensitivity in rice, while loss-of-function of OsTTL led to enhanced BR signaling and increased grain yield. OsLAC directly binds to OsTTL and regulates its phosphorylation-mediated turnover. The phosphorylation site Ser226 of OsTTL is essential for its ubiquitination and degradation. Overexpressing the dephosphorylation-mimic form of OsTTL (OsTTLS226A) resulted in more severe defects than did overexpressing OsTTL. These findings provide insight into the role of an ancient laccase in BR signaling and suggest that the OsLAC-OsTTL module could serve as a target for improving grain yield.
Subject(s)
Gene Expression Regulation, Plant , Laccase , MicroRNAs , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Oryza/enzymology , Laccase/metabolism , Laccase/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphorylation , Edible Grain/growth & development , Edible Grain/genetics , Edible Grain/metabolism , Signal Transduction , Plants, Genetically Modified , Brassinosteroids/metabolismABSTRACT
Successful colonization of the host requires Mycobacterium tuberculosis (Mtb) to sense and respond coordinately to disparate environmental cues during infection and adapt its physiology. However, how Mtb response to environmental cues and the availability of key carbon sources may be integrated is poorly understood. Here, by exploiting a reporter-based genetic screen, we have unexpectedly found that overexpression of transcription factors involved in Mtb lipid metabolism altered the dampening effect of low environmental potassium concentrations ([K+]) on the pH response of Mtb. Cholesterol is a major carbon source for Mtb during infection, and transcriptional analyses revealed that Mtb response to acidic pH was augmented in the presence of cholesterol and vice versa. Strikingly, deletion of the putative lipid regulator mce3R had little effect on Mtb transcriptional response to acidic pH or cholesterol individually, but resulted specifically in loss of cholesterol response augmentation in the simultaneous presence of acidic pH. Similarly, while mce3R deletion had little effect on Mtb response to low environmental [K+] alone, augmentation of the low [K+] response by the simultaneous presence of cholesterol was lost in the mutant. Finally, a mce3R deletion mutant was attenuated for growth in foamy macrophages and for colonization in a murine infection model that recapitulates caseous necrotic lesions and the presence of foamy macrophages. These findings reveal the critical coordination between Mtb response to environmental cues and cholesterol, a vital carbon source, and establishes Mce3R as a transcription factor that crucially serves to integrate these signals.
Subject(s)
Mycobacterium tuberculosis , Animals , Mice , Mycobacterium tuberculosis/genetics , Lipid Metabolism/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cholesterol/genetics , Cholesterol/metabolism , Carbon/metabolism , Hydrogen-Ion Concentration , Potassium/metabolismABSTRACT
Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.
Subject(s)
Centrosome , Microtubule-Associated Proteins , Microtubules , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Centrioles/metabolism , Centrioles/genetics , Centrosome/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Mutation , Nuclear Proteins , Protein Binding , Tubulin/metabolism , Tubulin/geneticsABSTRACT
Lysine L-lactylation (Kl-la) is a novel protein posttranslational modification (PTM) driven by L-lactate. This PTM has three isomers: Kl-la, N-ε-(carboxyethyl)-lysine (Kce) and D-lactyl-lysine (Kd-la), which are often confused in the context of the Warburg effect and nuclear presence. Here we introduce two methods to differentiate these isomers: a chemical derivatization and high-performance liquid chromatography analysis for efficient separation, and isomer-specific antibodies for high-selectivity identification. We demonstrated that Kl-la is the primary lactylation isomer on histones and dynamically regulated by glycolysis, not Kd-la or Kce, which are observed when the glyoxalase system was incomplete. The study also reveals that lactyl-coenzyme A, a precursor in L-lactylation, correlates positively with Kl-la levels. This work not only provides a methodology for distinguishing other PTM isomers, but also highlights Kl-la as the primary responder to glycolysis and the Warburg effect.
ABSTRACT
Acetylation of histone and nonhistone proteins is an important posttranslational modification affecting many cellular processes. Here, we report that NuA4 acetylation of Sip2, a regulatory ß subunit of the Snf1 complex (yeast AMP-activated protein kinase), decreases as cells age. Sip2 acetylation, controlled by antagonizing NuA4 acetyltransferase and Rpd3 deacetylase, enhances interaction with Snf1, the catalytic subunit of Snf1 complex. Sip2-Snf1 interaction inhibits Snf1 activity, thus decreasing phosphorylation of a downstream target, Sch9 (homolog of Akt/S6K), and ultimately leading to slower growth but extended replicative life span. Sip2 acetylation mimetics are more resistant to oxidative stress. We further demonstrate that the anti-aging effect of Sip2 acetylation is independent of extrinsic nutrient availability and TORC1 activity. We propose a protein acetylation-phosphorylation cascade that regulates Sch9 activity, controls intrinsic aging, and extends replicative life span in yeast.
Subject(s)
AMP-Activated Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Trans-Activators/metabolism , Acetylation , Caloric Restriction , Cell Division , Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Protein Kinases/metabolism , Saccharomyces cerevisiae/enzymology , Transcription Factors/metabolismABSTRACT
Local chemical short-range ordering (SRO) and spatial fluctuations of planar fault energy are important features of multi-element and metastable complex concentrated alloys (CCAs). Arising from them, dislocations in such alloys are distinctively wavy in both static and migrating conditions; yet, such effects on strength have remained unknown. In this work, molecular dynamics simulations are used to show that the wavy configurations of dislocations and their jumpy motion in a prototypic CCA of NiCoCr are due to the local fluctuations of the energy of SRO shear-faulting that accompanies dislocation motion, with the dislocation getting pinned at sites of hard atomic motifs (HAMs) associated with high local shear-fault energies. Unlike the global averaged shear-fault energy which in general will subdue on successive dislocation passes, the local fluctuations in the fault energy always remain in a CCA, thus offering a strength contribution that is unique in such alloys. Analysis of the magnitude of this form of dislocation resistance shows that this is dominating over contributions due to elastic misfit of alloying elements and is in good agreement with strengths predicted from molecular dynamics simulations and experiments. This work has unfolded the physical basis of strength in CCAs, which is important for the development of these alloys into useful structural materials.
ABSTRACT
Most of kiwifruit cultivars (e.g. Actinidia chinensis cv. Donghong, "DH") were sensitive to waterlogging, thus, waterlogging resistant rootstocks (e.g. Actinidia valvata Dunn, "Dunn") were widely used for kiwifruit industry. Those different species provided ideal materials to understand the waterlogging responses in kiwifruit. Compared to the weaken growth and root activities in "DH", "Dunn" maintained the relative high root activities under the prolonged waterlogging. Based on comparative analysis, transcript levels of pyruvate decarboxylase (PDCs) and alcohol dehydrogenase (ADHs) showed significantly difference between these two species. Both PDCs and ADHs had been significantly increased by waterlogging in "DH", while they were only limitedly triggered by 2 days stress and subsided during the prolonged waterlogging in "Dunn". Thus, 19 differentially expressed transcript factors (DETFs) had been isolated using weighted gene co-expression network analysis combined with transcriptomics and transcript levels of PDCs and ADHs in waterlogged "DH". Among these DETFs, dual luciferase and electrophoretic mobility shift assays indicated AcMYB68 could bind to and trigger the activity of AcPDC2 promoter. The stable over-expression of AcMYB68 significantly up-regulated the transcript levels of PDCs but inhibited the plant growth, especially the roots. Moreover, the enzyme activities of PDC in 35S::AcMYB68 were significantly enhanced during the waterlogging response than that in wild type plants. Most interestingly, comparative analysis indicated that the expression patterns of AcMYB68 and the previously characterized AcERF74/75 (the direct regulator on ADHs) either showed no responses (AcMYB68 and AcERF74) or very limited response (AcERF75) in "Dunn". Taken together, the restricted responses of AcMYB68 and AcERF74/75 in "Dunn" endow its waterlogging tolerance.
Subject(s)
Actinidia , Gene Expression Regulation, Plant , Plant Proteins , Pyruvate Decarboxylase , Actinidia/genetics , Actinidia/physiology , Actinidia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Plant Roots/genetics , Plant Roots/physiology , Water/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological , Promoter Regions, Genetic/geneticsABSTRACT
MOTIVATION: Drug-target interaction (DTI) prediction refers to the prediction of whether a given drug molecule will bind to a specific target and thus exert a targeted therapeutic effect. Although intelligent computational approaches for drug target prediction have received much attention and made many advances, they are still a challenging task that requires further research. The main challenges are manifested as follows: (i) most graph neural network-based methods only consider the information of the first-order neighboring nodes (drug and target) in the graph, without learning deeper and richer structural features from the higher-order neighboring nodes. (ii) Existing methods do not consider both the sequence and structural features of drugs and targets, and each method is independent of each other, and cannot combine the advantages of sequence and structural features to improve the interactive learning effect. RESULTS: To address the above challenges, a Multi-view Integrated learning Network that integrates Deep learning and Graph Learning (MINDG) is proposed in this study, which consists of the following parts: (i) a mixed deep network is used to extract sequence features of drugs and targets, (ii) a higher-order graph attention convolutional network is proposed to better extract and capture structural features, and (iii) a multi-view adaptive integrated decision module is used to improve and complement the initial prediction results of the above two networks to enhance the prediction performance. We evaluate MINDG on two dataset and show it improved DTI prediction performance compared to state-of-the-art baselines. AVAILABILITY AND IMPLEMENTATION: https://github.com/jnuaipr/MINDG.
Subject(s)
Algorithms , Neural Networks, ComputerABSTRACT
The precise timing of flowering plays a pivotal role in ensuring successful plant reproduction and seed production. This process is intricately governed by complex genetic networks that integrate internal and external signals. This study delved into the regulatory function of microRNA397 (miR397) and its target gene LACCASE-15 (OsLAC15) in modulating flowering traits in rice (Oryza sativa). Overexpression of miR397 led to earlier heading dates, decreased number of leaves on the main stem, and accelerated differentiation of the spikelet meristem. Conversely, overexpression of OsLAC15 resulted in delayed flowering and prolonged vegetative growth. Through biochemical and physiological assays, we uncovered that miR397-OsLAC15 had a profound impact on carbohydrate accumulation and photosynthetic assimilation, consequently enhancing the photosynthetic intensity in miR397-overexpressing rice plants. Notably, we identified that OsLAC15 is at least partially localized within the peroxisome organelle, where it regulates the photorespiration pathway. Moreover, we observed that a high CO2 concentration could rescue the late flowering phenotype in OsLAC15-overexpressing plants. These findings shed valuable insights into the regulatory mechanisms of miR397-OsLAC15 in rice flowering and provided potential strategies for developing crop varieties with early flowering and high-yield traits through genetic breeding.
Subject(s)
Oryza , Oryza/metabolism , Flowers/physiology , Plant Breeding , Plant Leaves/genetics , Plant Leaves/metabolism , Reproduction , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, PlantABSTRACT
Impaired bone healing following tooth extraction poses a significant challenge for implantation. As a crucial component of the natural immune system, the NLRP3 inflammasome is one of the most extensively studied Pattern-Recognition Receptors (PRRs), and is involved in multiple diseases. Yet, the role of NLRP3 in bone healing remains to be clarified. Here, to investigate the effect of NLRP3 on bone healing, we established a maxillary first molar extraction model in wild-type (WT) and NLRP3KO mice using minimally invasive techniques. We observed that NLRP3 was activated during the bone repair phase, and its depletion enhanced socket bone formation and osteoblast differentiation. Moreover, NLRP3 inflammasome activation was found to inhibit osteogenic differentiation in alveolar bone-derived mesenchymal stem cells (aBMSCs), an effect mitigated by NLRP3 deficiency. Mechanistically, we established that SMAD2/3-RUNX2 signaling pathway is a downstream target of NLRP3 inflammasome activation, and SMAD2/3 knockdown partially reversed the significant decrease in expression of RUNX2, OSX, and ALP induced by NLRP3. Thus, our findings demonstrate that NLRP3 negatively modulates alveolar socket bone healing and contribute to the understanding of the NLRP3-induced signaling pathways involved in osteogenesis regulation.
ABSTRACT
Proline hydroxylation (Hyp) regulates protein structure, stability, and protein-protein interaction. It is widely involved in diverse metabolic and physiological pathways in cells and diseases. To reveal functional features of the Hyp proteome, we integrated various data sources for deep proteome profiling of the Hyp proteome in humans and developed HypDB (https://www.HypDB.site), an annotated database and web server for Hyp proteome. HypDB provides site-specific evidence of modification based on extensive LC-MS analysis and literature mining with 14,413 nonredundant Hyp sites on 5,165 human proteins including 3,383 Class I and 4,335 Class II sites. Annotation analysis revealed significant enrichment of Hyp on key functional domains and tissue-specific distribution of Hyp abundance across 26 types of human organs and fluids and 6 cell lines. The network connectivity analysis further revealed a critical role of Hyp in mediating protein-protein interactions. Moreover, the spectral library generated by HypDB enabled data-independent analysis (DIA) of clinical tissues and the identification of novel Hyp biomarkers in lung cancer and kidney cancer. Taken together, our integrated analysis of human proteome with publicly accessible HypDB revealed functional diversity of Hyp substrates and provides a quantitative data source to characterize Hyp in pathways and diseases.
Subject(s)
Proline , Proteome , Chromatography, Liquid , Databases, Factual , Humans , Hydroxylation , Internet , Proline/metabolism , Proteome/metabolismABSTRACT
N6 -Methyladenosine (m6 A) is an important RNA modification catalyzed by methyltransferase-like 3 (METTL3) and METTL14. m6 A homeostasis mediated by the methyltransferase (MTase) complex plays key roles in various biological processes. However, the mechanism underlying METTL14 protein stability and its role in m6 A homeostasis remain elusive. Here, we show that METTL14 stability is regulated by the competitive interaction of METTL3 with the E3 ligase STUB1. STUB1 directly interacts with METTL14 to mediate its ubiquitination at lysine residues K148, K156, and K162 for subsequent degradation, resulting in a significant decrease in total m6 A levels. The amino acid regions 450-454 and 464-480 of METTL3 are essential to promote METTL14 stabilization. Changes in STUB1 expression affect METTL14 protein levels, m6 A modification and tumorigenesis. Collectively, our findings uncover an ubiquitination mechanism controlling METTL14 protein levels to fine-tune m6 A homeostasis. Finally, we present evidence that modulating STUB1 expression to degrade METTL14 could represent a promising therapeutic strategy against cancer.
Subject(s)
Adenosine , Methyltransferases , Adenosine/metabolism , Methyltransferases/genetics , HomeostasisABSTRACT
Although ARF can suppress tumor growth by activating p53 function, the mechanisms by which it suppresses tumor growth independently of p53 are not well understood. Here, we identified ARF as a key regulator of nuclear factor E2-related factor 2 (NRF2) through complex purification. ARF inhibits the ability of NRF2 to transcriptionally activate its target genes, including SLC7A11, a component of the cystine/glutamate antiporter that regulates reactive oxygen species (ROS)-induced ferroptosis. As a consequence, ARF expression sensitizes cells to ferroptosis in a p53-independent manner while ARF depletion induces NRF2 activation and promotes cancer cell survival in response to oxidative stress. Moreover, the ability of ARF to induce p53-independent tumor growth suppression in mouse xenograft models is significantly abrogated upon NRF2 overexpression. These results demonstrate that NRF2 is a major target of p53-independent tumor suppression by ARF and also suggest that the ARF-NRF2 interaction acts as a new checkpoint for oxidative stress responses.
Subject(s)
Amino Acid Transport System y+/genetics , Bone Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p18/genetics , Gene Expression Regulation, Neoplastic , NF-E2-Related Factor 2/genetics , Amino Acid Transport System y+/metabolism , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p18/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Heterografts , Humans , Mice , Mice, Nude , NF-E2-Related Factor 2/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolismABSTRACT
The 2nd CASMS conference was held virtually through Gather. Town platform from October 17 to 21, 2022, with a total of 363 registrants including an outstanding and diverse group of scientists at the forefront of their research fields from both academia and industry worldwide, especially in the United States and China. The conference offered a 5-day agenda with an exciting scientific program consisting of two plenary lectures, 14 parallel symposia, and 4 special sessions in which a total of 97 invited speakers presented technological innovations and their applications in proteomics & biological mass spectrometry and metabo-lipidomics & pharmaceutical mass spectrometry. In addition, 18 invited speakers/panelists presented at 3 research-focused and 2 career development workshops. Moreover, 144 posters, 54 lightning talks, 5 sponsored workshops, and 14 exhibitions were presented, from which 20 posters and 8 lightning talks received presentation awards. Furthermore, the conference featured 1 MCP lectureship and 5 young investigator awardees for the first time to highlight outstanding mid-career and early-career rising stars in mass spectrometry from our society. The conference provided a unique scientific platform for young scientists (i.e., graduate students, postdocs and junior faculty/investigators) to present their research, meet with prominent scientists, and learn about career development and job opportunities (http://casms.org).
Subject(s)
Mass Spectrometry , Societies, Scientific , Humans , China , Pharmaceutical Preparations , Proteomics , United StatesABSTRACT
Long noncoding RNAs (lncRNAs) are >200 nt RNA transcripts without protein-coding potential. LncRNAs can be categorized into intergenic, intronic, bidirectional, sense, and antisense lncRNAs based on the genomic localization to nearby protein-coding genes. The current CRISPR-based lncRNA knockout strategy works efficiently for lncRNAs distant from the protein-coding gene, whereas it causes genomic perturbance inevitably due to technical limitations. In this study, we introduce a novel lncRNA knockout strategy, BESST, by deleting the genomic DNA fragment from the branch point to the 3' splicing site in the last intron of the target lncRNA. The BESST knockout exhibited comparable or superior repressive efficiency to RNA silencing or conventional promoter-exon1 deletion. Significantly, the BESST knockout strategy minimized the intervention of adjacent/overlap protein-coding genes by removing an average of â¼130 bp from genomic DNA. Our data also found that the BESST knockout strategy causes lncRNA nuclear retention, resulting in decapping and deadenylation of the lncRNA poly(A) tail. Further study revealed that PABPN1 is essential for the BESST-mediated decay and subsequent poly(A) deadenylation and decapping. Together, the BESST knockout strategy provides a versatile tool for investigating gene function by generating knockout cells or animals with high specificity and efficiency.