Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Small ; 19(26): e2207195, 2023 06.
Article in English | MEDLINE | ID: mdl-36971278

ABSTRACT

Improving local bone mineral density (BMD) at fracture-prone sites of bone is a clinical concern for osteoporotic fracture prevention. In this study, a featured radial extracorporeal shock wave (rESW) responsive nano-drug delivery system (NDDS) is developed for local treatment. Based on a mechanic simulation, a sequence of hollow zoledronic acid (ZOL)-contained nanoparticles (HZNs) with controllable shell thickness that predicts various mechanical responsive properties is constructed by controlling the deposition time of ZOL and Ca2+ on liposome templates. Attributed to the controllable shell thickness, the fragmentation of HZNs and the release of ZOL and Ca2+ can be precisely controlled with the intervention of rESW. Furthermore, the distinct effect of HZNs with different shell thicknesses on bone metabolism after fragmentation is verified. In vitro co-culture experiments demonstrate that although HZN2 does not have the strongest osteoclasts inhibitory effect, the best pro-osteoblasts mineralization results are achieved via maintaining osteoblast-osteoclast (OB-OC) communication. In vivo, the HZN2 group also shows the strongest local BMD enhancement after rESW intervention and significantly improves bone-related parameters and mechanical properties in the ovariectomy (OVX)-induced osteoporosis (OP) rats. These findings suggest that an adjustable and precise rESW-responsive NDDS can effectively improve local BMD in OP therapy.


Subject(s)
Osteoporosis , Osteoporotic Fractures , Female , Rats , Animals , Osteoclasts , Osteoporotic Fractures/metabolism , Drug Liberation , Bone and Bones , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoporosis/metabolism , Osteoblasts , Zoledronic Acid/metabolism , Zoledronic Acid/pharmacology , Zoledronic Acid/therapeutic use
2.
Int J Mol Sci ; 23(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35628131

ABSTRACT

For developing an effective interventional approach and treatment modality for PM2.5, the effects of omega-3 fatty acids on alleviating inflammation and attenuating lung injury induced by inhalation exposure of PM2.5 were assessed in murine models. We found that daily oral administration of the active components of omega-3 fatty acids, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) effectively alleviated lung parenchymal lesions, restored normal inflammatory cytokine levels and oxidative stress levels in treating mice exposed to PM2.5 (20 mg/kg) every 3 days for 5 times over a 14-day period. Especially, CT images and the pathological analysis suggested protective effects of DHA and EPA on lung injury. The key molecular mechanism is that DHA and EPA can inhibit the entry and deposition of PM2.5, and block the PM2.5-mediated cytotoxicity, oxidative stress, and inflammation.


Subject(s)
Fatty Acids, Omega-3 , Lung Injury , Administration, Oral , Animals , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Inflammation/drug therapy , Lung Injury/drug therapy , Lung Injury/etiology , Mice , Particulate Matter/toxicity
3.
Biochem Biophys Res Commun ; 513(3): 694-700, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30987824

ABSTRACT

A variety of CTLA4-Fc fusion proteins and anti-CTLA4 monoclonal antibody have been approved. Given the shortcomings of macromolecular antibodies, recombinant proteins derived from the tenth unit of human type III fibronectin (FN3) termed monobody were studied as CTLA4 analogs in this study. A peptide EL161 derived from CD80-binding domain (MYPPPY motifs) in the complementarity determining region (CDR) 3 of CTLA4 was found to inhibit the interaction of CTLA4 with CD80 significantly. Afterward, the peptide EL16 as well as the CDR1 of CTLA4 which is also critical for its binding to CD80 were grafted onto FN3 and obtained a novel CD80 binding monobody protein CFN13.2 CFN13 showed 80% binding affinity compared to CTLA4. In addition, to increase the half-life, CFN13 was fused to human IgG1 Fc to generate CFN13-Fc fusion protein. As expected, CFN13-Fc bound to CD80 in a dosage-dependent manner as CFN13 did, and displayed 41.0% and 31.4% inhibition on the interaction of CTLA4-Fc with CD80 at 200 µg/ml and 100 µg/ml respectively. Moreover, peptide EL16 could inhibit CFN13-Fc binding to CD80 significantly, with the inhibition ratio of 64.3% and 52.8% at 100 and 50 µg/ml respectively, indicating that the peptide EL16 and CFN13-Fc shared the similar binding sites with CD80 and the CDR3 motif of CTLA4 contributed more than CDR1 in binding to CD80. In summary, our study provides insights into small molecular analogs of CTLA4.


Subject(s)
B7-1 Antigen/metabolism , CTLA-4 Antigen/chemistry , Fibronectins/chemistry , Peptides/chemistry , Protein Interaction Maps/drug effects , Small Molecule Libraries/chemistry , CTLA-4 Antigen/metabolism , Fibronectins/pharmacology , Humans , Molecular Docking Simulation , Peptides/pharmacology , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Small Molecule Libraries/pharmacology
4.
Adv Sci (Weinh) ; : e2405158, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021327

ABSTRACT

Radiated tumor cell-derived extracellular vesicles (RT-EVs) encapsulate abundant DNA fragments from irradiated tumor cells, in addition to acting as integrators of multiple tumor antigens. Accumulating evidence indicates these DNA fragments from damaged cells are involved in downstream immune responses, but most of them are degraded in cells before incorporation into derived RT-EVs, thus the low abundance of DNA fragments limits immune responses of RT-EVs. Here, this study found that different radiations affected fates of DNA fragments in RT-EVs. Boron neutron capture therapy (BNCT) induced DNA accumulation in RT-EVs (BEVs) by causing more DNA breaks and DNA oxidation resisting nuclease degradation. This is attributed to the high-linear energy transfer (LET) properties of alpha particles from the neutron capture reaction of 10B. When being internalized by dendritic cells (DCs), BEVs activated the DNA sensing pathway, resulting in functional enhancements including antigen presentation, migration capacity, and cytokine secretion. After vaccination of the BEVs-educated DCs (BEV@BMDCs), the effector T cells significantly expanded and infiltrated into tumors, suggesting robust anti-tumor immune activation. BEV@BMDCs not only effectively inhibited the primary tumor growth and metastasis formation but also elicited long-term immune memory. In conclusion, a successful DC vaccine is provided as a promising candidate for tumor vaccine.

5.
ACS Appl Mater Interfaces ; 16(3): 3232-3242, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38221726

ABSTRACT

Accurate prediction of the relative biological effectiveness (RBE) of boron neutron capture therapy (BNCT) is challenging. The therapy is different from other radiotherapy; the dynamic distribution of boron-containing compounds in tumor cells affects the therapeutic outcome considerably and hampers accurate measurement of the neutron-absorbed dose. Herein, we used boron-containing metal-organic framework nanoparticles (BMOFs) with high boron content to target U87-MG cells and maintain the concentration of the 10B isotope in cells. The content of boron in the cells could maintain 90% (60 ppm) within 20 min compared with that at the beginning; therefore, the accurate RBE of BNCT can be acquired. The effects of BNCT upon cells after neutron irradiation were observed, and the neutron-absorbed dose was obtained by Monte Carlo simulations. The RBE of BMOFs was 6.78, which was 4.1-fold higher than that of a small-molecule boron-containing agent (boric acid). The energy spectrum of various particles was analyzed by Monte Carlo simulations, and the RBE was verified theoretically. Our results suggested that the use of nanoparticle-based boron carriers in BNCT may have many advantages and that maintaining a stable boron distribution within cells may significantly improve the efficiency of BNCT.


Subject(s)
Boron Neutron Capture Therapy , Boron , Boron Neutron Capture Therapy/methods , Relative Biological Effectiveness , Neutrons
6.
Article in English | MEDLINE | ID: mdl-38686647

ABSTRACT

Nanocarriers have been researched comprehensively for the development of novel boron-containing agents in boron neutron capture therapy (BNCT). We designed and synthesized a multifunctional mesoporous silica nanoparticle (MSN)-based boron-containing agent. The latter was coated with a lipid bilayer (LB) and decorated with SP94 peptide (SFSIIHTPILPL) on the surface as SP94-LB@BA-MSN. The latter incorporated boric acid (BA) into hydrophobic mesopores, coated with an LB, and modified with SP94 peptide on the LB. SP94-LB@BA-MSN enhanced nano interface tumor-targeting ability but also prevented the premature release of drugs, which is crucial for BNCT because adequate boron content in tumor sites is required. SP94-LB@BA-MSN showed excellent efficacy in the BNCT treatment of HepG-2 cells. In animal studies with tumor-bearing mice, SP94-LB@BA-MSN exhibited a satisfactory accumulation at the tumor site. The boron content reached 40.18 ± 5.41 ppm in the tumor site 4 h after injection, which was 8.12 and 15.51 times higher than those in mice treated with boronated phenylalanine and those treated with BA. For boron, the tumor-to-normal tissue ratio was 4.41 ± 1.13 and the tumor-to-blood ratio was 5.92 ± 0.45. These results indicated that nanoparticles delivered boron to the tumor site effectively while minimizing accumulation in normal tissues. In conclusion, this composite (SP94-LB@BA-MSN) shows great promise as a boron-containing delivery agent for the treatment of hepatocellular carcinoma using BNCT. These findings highlight the potential of MSNs in the field of BNCT.

7.
Colloids Surf B Biointerfaces ; 224: 113204, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36801743

ABSTRACT

Calreticulin (CRT) on the cell surface that acts as an "eat me" signal is vital for macrophage-mediated programmed cell removal. The polyhydroxylated fullerenol nanoparticle (FNP) has appeared as an effective inducer to cause CRT exposure on cancer cell surface, but it failed in treating some cancer cells such as MCF-7 cells based on previous findings. Here, we carried out the 3D culture of MCF-7 cells, and interestingly found that the FNP induced CRT exposure on cells in 3D spheres via re-distributing CRT from endoplasmic reticulum (ER) to cell surface. Phagocytosis experiments in vitro and in vivo illustrated the combination of FNP and anti-CD47 monoclonal antibody (mAb) further enhanced macrophage-mediated phagocytosis to cancer cells. The maximal phagocytic index in vivo was about three times higher than that of the control group. Moreover, in vivo tumorigenesis experiments in mice proved that FNP could regulate the progress of MCF-7 cancer stem-like cells (CSCs). These findings expand the application of FNP in tumor therapy of anti-CD47 mAb and 3D culture can be used as a screening tool for nanomedicine.


Subject(s)
Antineoplastic Agents , Nanoparticles , Humans , Mice , Animals , MCF-7 Cells , Calreticulin/metabolism , Macrophages/metabolism , Phagocytosis , Antineoplastic Agents/pharmacology
8.
Cells ; 11(21)2022 11 03.
Article in English | MEDLINE | ID: mdl-36359874

ABSTRACT

(1) Background: Resisting anoikis is a vital and necessary characteristic of malignant cancer cells, but there is no existing quantification method. Herein, a sensitive probe for assessing anoikis resistance of cancer cells detached from the extracellular matrix was developed based on the aggregation-induced emission (AIE) of AIEgens. It has been reported that detached cancer cell endocytose activated integrin clusters, and in the endosome these clusters recruit and activate phosphorylate focal adhesion kinase (pFAK) in the cytoplasm to induce signaling that supports the growth of detached cancer cells. (2) Methods: We established a lost nest cell model of cancer cells and determined their ability to resist anoikis. The colocalization of the activated integrin, pFAK, and endosomes in model cells was observed and calculated. (3) Results: The fluorescence signal intensity of the probe was significantly higher than that of the integrin antibody in the model cells and the fluorescence signal of probe signal was better overlapped with labeled pFAK by fluorescence in endosomes in model cells. (4) Conclusions: We developed a quantitative multi-parametric image analysis program to calculate fluorescent intensity of the probe and antibodies against pFAK and Rab5 in the areas of colocalization. A positive correlation of fluorescence signal intensity between the probe and pFAK on the endosome was observed. Therefore, the probe was used to quantitatively evaluate resisting anoikis of different cancer cell lines under the lost nest condition.


Subject(s)
Anoikis , Neoplasms , Humans , Signal Transduction/physiology , Cell Line , Integrins
9.
Lab Chip ; 21(14): 2721-2729, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34165474

ABSTRACT

Metastatic tumour recurrence caused by circulating tumour cells (CTCs) after surgery is responsible for more than 90% of tumour-related deaths. A postoperative evaluation system based on the long-term dynamic detection of CTCs helps in guiding the postoperative treatment of tumours in real time and preventing metastases and recurrence of tumours after treatment. In this study, a simple, rapid, and low-cost postoperative evaluation system was established based on the number of CTCs captured by a label-free acoustic separation device from whole blood samples of mice, of which breast tumours were surgically removed, and tumour metastasis was successfully predicted. First, an acoustofluidic device with a custom-designed bottom microcavity array was fabricated to induce highly localised acoustic microstreaming by applying acoustic vibration. Second, experiments of capturing 'defined' cells (artificially mixed individual 4T1 cancer cells into normal blood) based on optimal acoustic streaming were performed. The separation device exhibited a high capture efficiency (>96%). Further applications of capturing the 'true' CTCs derived from postoperative mice were successfully developed to predict tumour prognosis based on the number of captured CTCs. Finally, the prediction was verified through long-term observation of mice with excised tumours. The acoustofluidic device can efficiently capture CTCs and precisely predict tumour metastasis in a low-cost and non-invasive manner. This will help clinicians monitor patients that underwent surgical resection of tumours over a long period of time and facilitate optimal treatment strategies in a timely manner.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Acoustics , Animals , Cell Count , Cell Line, Tumor , Cell Separation , Female , Humans , Mice
10.
J Nanosci Nanotechnol ; 21(12): 6041-6047, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34229802

ABSTRACT

Nano-particulate matters (NPM) induced the lung injury in mice were evaluated using quantitative micro-computed tomography in the present article. It is an important negative effect of health problems that NPM exposure provokes changes in the lung injury. The micro-computed tomography (CT) to assess lung injury in mouse models has been investigated. The dynamic structural changes in a NPM-induced lung injury mouse mode were monitored. Adults female BALB/C mice were repeatedly exposed to NPM, and micro-CT scans were performed at day 0, 3, 5 and 9. Lung samples were also collected for histological analysis at each time point. The total lung volume, the injured lung volume, and the normal lung volume were defined and calculated volume during the phase of NPM-exposure on the mice. The total and injured lung volumes of NPM-exposed mice were significantly larger than those of the mice at day 5 and 9. The data from micro-CT was consistent with alveolar enlargement and destruction by histological quantification from pathological section. The study for NPM-induced lung injury model by micro-CT may extend our understanding of the distinct pathophysiology of NPM induced lung injury in mice.


Subject(s)
Lung Injury , Particulate Matter , Animals , Disease Models, Animal , Female , Lung/diagnostic imaging , Lung Injury/chemically induced , Lung Injury/diagnostic imaging , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Particulate Matter/toxicity , X-Ray Microtomography
11.
J Nanosci Nanotechnol ; 21(12): 6054-6059, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34229804

ABSTRACT

Enhanced permeation and retention (EPR) effect, the mechanism by which nanodrugs accumulate in tumors and acquire superior curative effect. The questions of these mechanisms occur because of limited clinical transformation of engineered nanomaterials after 30 years. The difference of EPR limits the therapeutic effect of nanodrugs in the individual patient. Evaluation of the EPR effect in the individual patient will aid in selecting patients who will accumulate higher amounts of nanotherapeutics and show better therapeutic efficacy. Based on varied TIMP1/MMP-9 in serum, an aggregation-induced emission luminogen probe was designed and constructed to detect and evaluate the EPR effect in model mouse. The result showed that the ratio of TIMP1/MMP-9 (in the range 0.2-1.2) and fluorescence intensity of the probe were negative linear correlation and the effects of BSA-rhodamine accumulation in tumor were individualized differences as well as correlated with the relative ratio of TIMP-1/MMP-9 in serum. Our data support the development of these biomarkers probes based on the personalized nanotherapy of tumor.


Subject(s)
Nanostructures , Neoplasms , Animals , Humans , Mice , Neoplasms/drug therapy , Rhodamines
12.
Article in English | MEDLINE | ID: mdl-32486636

ABSTRACT

Helicobacter pylori (H. pylori) eradication by antibiotics and proton pump inhibitor treatment is limited by the low pH microenvironment in the stomach and can lead to antibiotic resistance. We fabricated fullerenol nanoparticles (FNPs) with varied chemical structures responding to a pinacol rearrangement of vicinal hydroxyl to form carbonyls in low pH environments. An obvious increase in C═O/C-O was induced in low pH and was positively correlated with a peroxidase-like activity. The FNPs exerted an excellent effect on H. pylori eradication in vitro and in vivo because of their peroxidase-like activity. FNP treatment of a H. pylori biofilm revealed that FNPs broke down polysaccharides in cell wall components, resulting in collapse of the bacteria. The cycles of FNPs combining and dissociating with the peroxidase substrate were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and confirmed that FNPs enhance peroxidase-like activity. Further, the isothermal titration calorimetry results showed that FNPs with more C═O/C-O had greater affinity to bind the peroxidase substrates. Therefore, we suggest that varied C═O/C-O serves as a switch to respond to low pH in the stomach to kill H. pylori by inducing a peroxidase-like activity. FNPs can also overcome the challenge of antibiotic resistance to achieve H. pylori eradication in the stomach.

13.
ACS Appl Mater Interfaces ; 12(13): 14958-14970, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32142246

ABSTRACT

We report the construction of blood cell membrane cloaked mesoporous silica nanoparticles for delivery of nanoparticles [fullerenols (Fols)] with fibrinolysis activity which endows the active Fol with successful thrombolysis effect in vivo. In vitro, Fols present excellent fibrinolysis activity, and the Fol with the best fibrinolysis activity is screened based on the correlation between Fols' structure and their fibrinolysis activity. However, the thrombolytic effect in vivo is not satisfactory. To rectify the unsatisfactory situation and avoid the exogenous stimuli, a natural blood cell membrane cloaking strategy with loading the active Fol is chosen to explore as a novel thrombolysis drug. After cloaking, the therapeutic platform prolongs blood circulation time and enhances the targeting effect. Interestingly, compared with platelet membrane cloaking, red blood cell (RBC) membrane cloaking demonstrates stronger affinity with fibrin and more enrichment at the thrombus site. The Fol with RBC cloaking shows quick and efficient thrombolysis efficacy in vivo with less bleeding risk, more excellent blood compatibility, and better biosafety when compared with the clinical drug urokinase (UK). These findings not only validate the blood cell membrane cloaking strategy as an effective platform for Fol delivery on thrombolysis treatment, but also hold a great promising solution for other active nanoparticle deliveries in vivo.


Subject(s)
Drug Carriers/chemistry , Erythrocyte Membrane/metabolism , Fullerenes/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Cell Survival/drug effects , Disease Models, Animal , Erythrocyte Membrane/drug effects , Fibrinolysis/drug effects , Fluorescein/chemistry , Fullerenes/metabolism , Fullerenes/pharmacology , Fullerenes/therapeutic use , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , Nanoparticles/chemistry , Rats , Silicon Dioxide/chemistry , Thrombosis/chemically induced , Thrombosis/drug therapy , Thrombosis/pathology , Tissue Distribution , Urokinase-Type Plasminogen Activator/metabolism
14.
Nanoscale ; 12(17): 9359-9365, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32315013

ABSTRACT

Overactivation and excessive differentiation of osteoclasts (OCs) has been implicated in the course of bone metabolism-related diseases. Although fullerenol nanoparticles (fNPs) have been suggested to inhibit OC differentiation and OC function in our previous work, systemic studies on the effect of fNPs on bone diseases, e.g., osteoporosis (OP), in vivo remain elusive. Herein, it is demonstrated that fNPs significantly suppress the differentiation of OCs that derived from the murine bone marrow monocytes and inhibit the formation of the sealing zone by blocking the formation and patterning of podosomes in OCs spatiotemporally. In vivo, fNPs are supposed to be an efficient inhibitor of the overactivation of OCs in a LPS-induced bone erosion mouse model. The therapeutic effect of fNPs on osteoporosis is also investigated in an ovariectomy-induced osteoporosis rat model. The well-organized trabecular bone, the reduction in the number of TRAP positive cells, the improvement of bone-associated parameters, and the mechanical properties all demonstrate that fNPs, similar to diphosphonates, can be a promising candidate for the effective treatment of osteoporosis.


Subject(s)
Bone Resorption/prevention & control , Fullerenes/therapeutic use , Nanoparticles/therapeutic use , Osteoclasts/drug effects , Osteoporosis/drug therapy , Podosomes/drug effects , Animals , Cancellous Bone/drug effects , Disease Models, Animal , Female , Femur/drug effects , Fullerenes/chemistry , Fullerenes/pharmacology , Mice , Microfilament Proteins/metabolism , Nanoparticles/chemistry , Osteoclasts/metabolism , Osteoclasts/pathology , Osteogenesis/drug effects , Osteoporosis/pathology , Osteoporosis/physiopathology , Podosomes/metabolism , Podosomes/pathology , Rats , Tartrate-Resistant Acid Phosphatase/metabolism
15.
Nanoscale ; 12(22): 12174-12176, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32478778

ABSTRACT

Correction for 'Modulated podosome patterning in osteoclasts by fullerenol nanoparticles disturbs the bone resorption for osteoporosis treatment' by Kui Chen et al., Nanoscale, 2020, 12, 9359-9365, DOI: 10.1039/D0NR01625J.

SELECTION OF CITATIONS
SEARCH DETAIL