Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Am Soc Nephrol ; 30(11): 2191-2207, 2019 11.
Article in English | MEDLINE | ID: mdl-31511361

ABSTRACT

BACKGROUND: Recombinant human relaxin-2 (serelaxin), which has organ-protective actions mediated via its cognate G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), has emerged as a potential agent to treat fibrosis. Studies have shown that serelaxin requires the angiotensin II (AngII) type 2 receptor (AT2R) to ameliorate renal fibrogenesis in vitro and in vivo. Whether its antifibrotic actions are affected by modulation of the AngII type 1 receptor (AT1R), which is expressed on myofibroblasts along with RXFP1 and AT2R, is unknown. METHODS: We examined the signal transduction mechanisms of serelaxin when applied to primary rat renal and human cardiac myofibroblasts in vitro, and in three models of renal- or cardiomyopathy-induced fibrosis in vivo. RESULTS: The AT1R blockers irbesartan and candesartan abrogated antifibrotic signal transduction of serelaxin via RXFP1 in vitro and in vivo. Candesartan also ameliorated serelaxin's antifibrotic actions in the left ventricle of mice with cardiomyopathy, indicating that candesartan's inhibitory effects were not confined to the kidney. We also demonstrated in a transfected cell system that serelaxin did not directly bind to AT1Rs but that constitutive AT1R-RXFP1 interactions could form. To potentially explain these findings, we also demonstrated that renal and cardiac myofibroblasts expressed all three receptors and that antagonists acting at each receptor directly or allosterically blocked the antifibrotic effects of either serelaxin or an AT2R agonist (compound 21). CONCLUSIONS: These findings have significant implications for the concomitant use of RXFP1 or AT2R agonists with AT1R blockers, and suggest that functional interactions between the three receptors on myofibroblasts may represent new targets for controlling fibrosis progression.


Subject(s)
Kidney/pathology , Myocardium/pathology , Myofibroblasts/physiology , Receptor, Angiotensin, Type 1/physiology , Receptor, Angiotensin, Type 2/physiology , Receptors, G-Protein-Coupled/physiology , Receptors, Peptide/physiology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Animals , Benzimidazoles/therapeutic use , Biphenyl Compounds/therapeutic use , Cells, Cultured , Fibrosis , Humans , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 2/agonists , Receptors, G-Protein-Coupled/agonists , Receptors, Peptide/agonists , Recombinant Proteins , Relaxin/physiology , Tetrazoles/therapeutic use
2.
Hypertension ; 64(2): 315-22, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24866131

ABSTRACT

Relaxin is a naturally occurring peptide hormone that mediates systemic hemodynamic and renal adaptive changes during pregnancy and abrogates aberrant scar tissue formation (fibrosis) in diverse pathogeneses. However, its efficacy relative to renin­angiotensin system blockade, the most effective antifibrotic strategy currently available, is not known. We compared the individual versus combined antifibrotic effects of serelaxin (a recombinant form of human gene-2 relaxin) and the angiotensin-converting enzyme inhibitor enalapril, in preventative (started before injury) and therapeutic (treatment of established fibrosis) strategies, in a mouse model of isoprenaline-induced cardiac injury (at 17 days). Changes in systolic blood pressure, organ hypertrophy, and tissue remodeling/fibrosis were assessed. Pretreatment with serelaxin (0.5 mg/kg per day via subcutaneous administration) alone reduced cardiac fibrosis to a greater extent than enalapril (200 mg/L via drinking water; equivalent to 48 mg/kg per day) alone (P<0.05 versus enalapril alone). Additionally, the combined effects of serelaxin and enalapril reduced cardiac fibrosis by at least 2-fold compared with enalapril alone, when administered preventatively or therapeutically; by suppressing transforming growth factor-ß1 expression and phosphorylation of Smad2 (an intracellular regulator of transforming growth factor-ß1 activity; both P<0.05 versus enalapril alone) to a greater extent. The effects of serelaxin were independent of blood pressure, while enalapril lowered systolic blood pressure in the model studied. These findings suggest that serelaxin alone and in combination with an angiotensin-converting enzyme inhibitor more effectively ameliorates fibrosis than angiotensin-converting enzyme inhibition alone in the diseased heart, in a clinically relevant experimental scenario.


Subject(s)
Blood Pressure/drug effects , Enalapril/therapeutic use , Heart Diseases/drug therapy , Heart/drug effects , Relaxin/therapeutic use , Animals , Enalapril/pharmacology , Fibrosis/pathology , Heart Diseases/pathology , Male , Mice , Myocardium/pathology , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Relaxin/pharmacology , Renin-Angiotensin System/drug effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL