Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Fish Shellfish Immunol ; 144: 109258, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042226

ABSTRACT

Large yellow croaker (Larimichthys crocea) is the most productive marine fish in China. Cryptocaryon irritans is an extremely destructive parasite that causes great economic losses in large yellow croaker aquaculture industry. Therefore, it is very necessary to study the immune response of large yellow croaker in response to C. irritans infection. In this study, the transcriptomic profiles of large yellow croaker were sequenced and analyzed in the brain and head kidney at 72 h after C. irritans infection. Cytokines and chemokines related terms were significantly enriched based on the GO enrichment of down-regulated differentially expressed genes (DEGs) from the head kidney. Meanwhile, cytokine-cytokine receptor interaction was significantly enriched based on the KEGG enrichment of up-regulated DEGs from the brain and down-regulated DEGs from the head kidney, respectively. Moreover, the majority of inflammation-related DEGs were significantly up-regulated in the brain, but distinctly down-regulated in the head kidney. These results showed that the brain and head kidney might play different roles against C. irritans infection, and the inflammatory response of large yellow croaker may be restrained during C. irritans infection. Taken together, the transcriptomic analyses will be helpful to more comprehensively understand the immune mechanism of teleost against C. irritans infection, and provide a theoretical basis for the prevention and treatment of Cryptosporidiosis.


Subject(s)
Ciliophora Infections , Ciliophora , Fish Diseases , Hymenostomatida , Perciformes , Animals , Ciliophora/physiology , Fish Proteins/genetics , Gene Expression Profiling/veterinary
2.
Fish Shellfish Immunol ; 140: 108903, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423402

ABSTRACT

The common Chinese cuttlefish (Sepiella japonica) is an essential species for stock enhancement by releasing juveniles in the East China Sea now. S. japonica is susceptible to bacterial diseases during parental breeding. In vertebrates, Interleukin-17 (IL-17) cytokine family plays critical roles in both acute and chronic inflammatory responses. In Cephalopoda, few studies have been reported on IL-17 genes so far. In this study, twenty IL-17 transcripts obtained from S. japonica were divided into eight groups (designated as Sj_IL-17-1 to Sj_IL-17-8). Multiple alignment analysis showed that IL-17s in S. japonica and human both contained four ß-folds (ß1-ß4), except for Sj_IL-17-6 with two ß-folds (ß1 and ß2), and the third and fourth ß-folds of Sj_IL-17-5 and Sj_IL-17-8 were longer than those of other Sj_IL-17. Protein structure and conserved motifs analysis demonstrated that Sj_IL-17-5 and Sj_IL-17-6 displayed different protein structure with respect to other six Sj_IL-17 proteins. The homology and phylogenetic analysis of amino acids showed that Sj_IL-17-5, Sj_IL-17-6 and Sj_IL-17-8 had low homology with the other five Sj_IL-17s. Eight Sj_IL-17 mRNAs were ubiquitously expressed in ten examined tissues, with dominant expression in the hemolymph. qRT-PCR data showed that the mRNA expression levels of Sj_IL-17-2, Sj_IL-17-3, Sj_IL-17-6, and Sj_IL-17-8 were significantly up-regulated in infected cuttlefishes, and Sj_IL-17-2, Sj_IL-17-6, Sj_IL-17-7, and Sj_IL-17-8 mRNAs Awere significantly up-regulated after bath infection of Vibrio harveyi, suggesting that certain Sj_IL-17s were involved in the immune response of S. japonica against V. harveyi infection. These results implied that Sj_IL-17s were likely to have distinct functional diversification. This study aims to understand the involvement of Sj_IL-17 genes in immune responses of cuttlefish against bacterial infections.


Subject(s)
Decapodiformes , Interleukin-17 , Vibrio Infections , Vibrio , Animals , Humans , Decapodiformes/genetics , Decapodiformes/immunology , Decapodiformes/microbiology , Interleukin-17/chemistry , Interleukin-17/genetics , Interleukin-17/immunology , Phylogeny , Vibrio Infections/immunology , Vibrio Infections/veterinary , China
3.
Mar Drugs ; 21(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37233469

ABSTRACT

Marine organisms live in harsh marine habitats, causing them to have significantly different and more diverse proteins than those of terrestrial organisms [...].


Subject(s)
Aquatic Organisms , Peptides , Aquatic Organisms/chemistry , Peptides/pharmacology , Peptides/chemistry
4.
Mar Drugs ; 21(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36827146

ABSTRACT

The aim of this study was to investigate the protective function and mechanism of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from skipjack tuna cardiac arterial bulbs on skin photoaging using UVB-irradiated HaCaT cell model. The present results indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) had significant cytoprotective effect on UVB-irradiated HaCaT cells (p < 0.001). Hoechst 33342 staining showed that apoptosis of UV-irradiated HaCaT cells could be significantly reduced by the treatment of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM); JC-1 staining showed that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could protect HaCaT cells from apoptosis by restoring mitochondrial membrane potential (MMP); Furthermore, TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could significantly down-regulate the ratio of Bax/Bcl-2 and reduce the expression level of the apoptosis-executing protein Caspase-3 by decreasing the expression of protein Caspase-8 and Caspase-9 (p < 0.05). The action mechanism indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could up-regulate the expression levels of Nrf2, NQO1 and HO-1 (p < 0.05), which further increased the activity of downstream proteases (SOD, CAT and GSH-Px), and scavenged reactive oxygen species (ROS) and decreased the intracellular levels of malondialdehyde (MDA). In addition, molecular docking indicated that TCP3 (PKK) and TCP6 (YEGGD) could competitively inhibit the Nrf2 binding site because they can occupy the connection site of Nrf2 by binding to the Kelch domain of Keap1 protein. TCP9 (GPGLM) was inferred to be non-competitive inhibition because it could not bind to the active site of the Kelch domain of Keap1 protein. In summary, the antioxidant peptides TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from cardiac arterial bulbs of skipjack tuna can effectively protect HaCaT cells from UVB-irradiated damage and can be used in the development of healthy and cosmetic products to treat diseases caused by UV radiation.


Subject(s)
Antioxidants , Keratinocytes , Animals , Humans , Antioxidants/pharmacology , HaCaT Cells , Kelch-Like ECH-Associated Protein 1/metabolism , Tuna/metabolism , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Peptides/pharmacology , Reactive Oxygen Species/metabolism , Apoptosis , Ultraviolet Rays
5.
Mar Drugs ; 21(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37888451

ABSTRACT

The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5 and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC) (216.6 residues/1000 residues). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6 and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity, with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were -7.3, -10.9 and -9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as natural functional components in the development of health care products to control hypertension.


Subject(s)
Collagen , Peptidyl-Dipeptidase A , Animals , Molecular Docking Simulation , Collagen/chemistry , Fishes/metabolism , Peptides/pharmacology , Peptides/chemistry , Acids/chemistry , Angiotensins
6.
Mar Drugs ; 21(11)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37999403

ABSTRACT

Antarctic krill (Euphausia superba) is the world's largest resource of animal proteins and is thought to be a high-quality resource for future marine healthy foods and functional products. Therefore, Antarctic krill was degreased and separately hydrolyzed using flavourzyme, pepsin, papain, and alcalase. Protein hydrolysate (AKH) of Antarctic krill prepared by trypsin showed the highest Ca-chelating rate under the optimized chelating conditions: a pH of 8.0, reaction time of 50 min, temperature of 50 °C, and material/calcium ratio of 1:15. Subsequently, fourteen Ca-chelating peptides were isolated from APK by ultrafiltration and a series of chromatographic methods and identified as AK, EAR, AEA, VERG, VAS, GPK, SP, GPKG, APRGH, GVPG, LEPGP, LEKGA, FPPGR, and GEPG with molecular weights of 217.27, 374.40, 289.29, 459.50, 275.30, 300.36, 202.21, 357.41, 536.59, 328.37, 511.58, 516.60, 572.66, and 358.35 Da, respectively. Among fourteen Ca-chelating peptides, VERG presented the highest Ca-chelating ability. Ultraviolet spectrum (UV), Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM) analysis indicated that the VERG-Ca chelate had a dense granular structure because the N-H, C=O and -COOH groups of VERG combined with Ca2+. Moreover, the VERG-Ca chelate is stable in gastrointestinal digestion and can significantly improve Ca transport in Caco-2 cell monolayer experiments, but phytate could significantly reduce the absorption of Ca derived from the VERG-Ca chelate. Therefore, Ca-chelating peptides from protein hydrolysate of Antarctic krill possess the potential to serve as a Ca supplement in developing healthy foods.


Subject(s)
Euphausiacea , Protein Hydrolysates , Animals , Humans , Protein Hydrolysates/chemistry , Euphausiacea/chemistry , Calcium , Caco-2 Cells , Peptides/chemistry , Antarctic Regions
7.
Mar Drugs ; 21(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37367685

ABSTRACT

In this study, we investigate the ameliorating functions of QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) from monkfish swim bladders on an FFA-induced NAFLD model of HepG2 cells. The lipid-lowering mechanisms revealed that these five oligopeptides can up-regulate the expression of phospho-AMP-activated protein kinase (p-AMPK) proteins to inhibit the expression of the sterol regulatory element binding protein-1c (SREBP-1c) proteins on increasing lipid synthesis and up-regulating the expression of the PPAP-α and CPT-1 proteins on promoting the ß-oxidation of fatty acids. Moreover, QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) can significantly inhibit reactive oxygen species' (ROS) production, promote the activities of intracellular antioxidases (superoxide dismutase, SOD; glutathione peroxidase, GSH-PX; and catalase, CAT) and bring down the content of malondialdehyde (MDA) derived from lipid peroxidation. Further investigations revealed that the regulation of these five oligopeptides on oxidative stress was achieved through activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to raise the expression levels of the heme oxygenase 1 (HO-1) protein and downstream antioxidant proteases. Therefore, QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) could serve as candidate ingredients to develop functional products for treating NAFLD.


Subject(s)
Antioxidants , Non-alcoholic Fatty Liver Disease , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , NF-E2-Related Factor 2/metabolism , AMP-Activated Protein Kinases/metabolism , Oxidative Stress , Fatty Acids , Peptides/metabolism
8.
Mar Drugs ; 21(3)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36976218

ABSTRACT

In the study, papain was chosen from five proteases to hydrolyze proteins of monkfish swim bladders for effectively utilizing monkfish (Lophius litulon) processing byproducts, and the hydrolysis conditions of papain were optimized as hydrolysis temperature of 65 °C, pH 7.5, enzyme dose 2.5% and time 5 h using single-factor and orthogonal experiments. Eighteen peptides were purified from the swim bladder hydrolysate of monkfish by ultrafiltration and gel permeation chromatography methods and identified as YDYD, QDYD, AGPAS, GPGPHGPSGP, GPK, HRE, GRW, ARW, GPTE, DDGGK, IGPAS, AKPAT, YPAGP, DPT, FPGPT, GPGPT, GPT and DPAGP, respectively. Among eighteen peptides, GRW and ARW showed significant DPPH· scavenging activities with EC50 values of 1.053 ± 0.003 and 0.773 ± 0.003 mg/mL, respectively; YDYD, QDYD, GRW, ARW and YPAGP revealed significantly HO· scavenging activities with EC50 values of 0.150 ± 0.060, 0.177 ± 0.035, 0.201 ± 0.013, 0.183 ± 0.0016 and 0.190 ± 0.010 mg/mL, respectively; YDYD, QDYD, ARW, DDGGK and YPAGP have significantly O2-· scavenging capability with EC50 values of 0.126 ± 0.0005, 0.112 ± 0.0028, 0.127 ± 0.0002, 0.128 ± 0.0018 and 0.107 ± 0.0002 mg/mL, respectively; and YDYD, QDYD and YPAGP showed strong ABTS+· scavenging ability with EC50 values of 3.197 ± 0.036, 2.337 ± 0.016 and 3.839 ± 0.102 mg/mL, respectively. YDYD, ARW and DDGGK displayed the remarkable ability of lipid peroxidation inhibition and Ferric-reducing antioxidant properties. Moreover, YDYD and ARW can protect Plasmid DNA and HepG2 cells against H2O2-induced oxidative stress. Furthermore, eighteen isolated peptides had high stability under temperatures ranging from 25-100 °C; YDYD, QDYD, GRW and ARW were more sensitive to alkali treatment, but DDGGK and YPAGP were more sensitive to acid treatment; and YDYD showed strong stability treated with simulated GI digestion. Therefore, the prepared antioxidant peptides, especially YDYD, QDYD, GRW, ARW, DDGGK and YPAGP from monkfish swim bladders could serve as functional components applied in health-promoting products because of their high-antioxidant functions.


Subject(s)
Antioxidants , Hydrogen Peroxide , Animals , Antioxidants/chemistry , Papain , Peptides/chemistry , Fishes/metabolism , Protein Hydrolysates/chemistry
9.
Mol Biol Rep ; 49(7): 6385-6394, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35503491

ABSTRACT

BACKGROUND: Neuropeptide FF (NPFF), an octapeptide of the RFamide-related peptides (FaRPs), is involved in regulatory function in various biological processes. The regulatory role of NPFF in the immune and inflammatory response was currently being revealed. METHODS: Neuropeptide FF-related gene (termed LpNPFF) and its two receptors, NPFF receptor 1 (LpNPFFR1) and NPFF receptor 2 (LpNPFFR2) were identified by PCR and Semi-quantitative RT-PCR assay. Effect of LpNPFF on the production of nitric oxide (NO) in macrophage RAW264.7 cell was divided into PBS group, lipopolysaccharide (LPS) group, LPS treated with LpNPFF group, and LPS treated with LpNPFF and receptor antagonist RF9 group. Then specimens were measured by color reaction at 570 nm absorbance value. RESULTS: Sequence analysis showed that LpNPFF cDNA consists of 835 nucleotides with a 5'- untranslated region (UTR) of 150 base pair (bp), an open reading frame (ORF) of 384 bp and a 3'-UTR of 300 bp (Accession No. MT012894). The ORF encodes 127 amino acid (aa) residues with a hydrophobic signal peptide at N-terminus and two presumptive peptides with -PQRFa structure, LpNPFF (1) and LpNPFF (2). LpNPFFR1 and LpNPFFR2 encode 427 and 444 aa residues respectively, which both have seven hydrophobic TMDs and identified as G protein coupled receptors (GPCRs). Results of tissue distribution showed that LpNPFF and receptors were highly expressed in the brain and gonad. Furtherly, in vitro assay found LpNPFF could inhibit NO production in RAW 264.7 macrophages under inflammatory stress with LPS, while its receptor antagonist RF9 caused the evoke of NO generation. CONCLUSIONS: These results contribute to the further study of neuropeptide evolution in marine organisms, and also provide a new research idea for exploring the related functions of NPFF gene.


Subject(s)
Lipopolysaccharides , Receptors, Neuropeptide , Animals , Anti-Inflammatory Agents , Lipopolysaccharides/pharmacology , Nitric Oxide , Oligopeptides/pharmacology , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism
10.
Mar Drugs ; 20(5)2022 May 14.
Article in English | MEDLINE | ID: mdl-35621976

ABSTRACT

For making full use of aquatic by-products to produce high value-added products, Siberian sturgeon (Acipenser baerii) cartilages were degreased, mineralized, and separately hydrolyzed by five kinds of proteases. The collagen hydrolysate (SCH) generated by Alcalase showed the strongest 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·) and hydroxide radical (HO·) scavenging activity. Subsequently, thirteen antioxidant peptides (SCP1-SCP3) were isolated from SCH, and they were identified as GPTGED, GEPGEQ, GPEGPAG, VPPQD, GLEDHA, GDRGAEG, PRGFRGPV, GEYGFE, GFIGFNG, PSVSLT, IELFPGLP, LRGEAGL, and RGEPGL with molecular weights of 574.55, 615.60, 583.60, 554.60, 640.64, 660.64, 885.04, 700.70, 710.79, 602.67, 942.12, 714.82, and 627.70 Da, respectively. GEYGFE, PSVSLT, and IELFPGLP showed the highest scavenging activity on DPPH· (EC50: 1.27, 1.05, and 1.38 mg/mL, respectively) and HO· (EC50: 1.16, 0.97, and 1.63 mg/mL, respectively), inhibiting capability of lipid peroxidation, and protective functions on H2O2-damaged plasmid DNA. More importantly, GEYGFE, PSVSLT, and IELFPGLP displayed significant cytoprotection on HUVECs against H2O2 injury by regulating the endogenous antioxidant enzymes of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Therefore, the research provided better technical assistance for a higher-value utilization of Siberian sturgeon cartilages and the thirteen isolated peptides-especially GEYGFE, PSVSLT, and IELFPGLP-which may serve as antioxidant additives for generating health-prone products to treat chronic diseases caused by oxidative stress.


Subject(s)
Antioxidants , Cytoprotection , Animals , Cartilage , Collagen , Fishes , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen Peroxide/pharmacology , Peptides/chemistry , Peptides/pharmacology
11.
Mar Drugs ; 20(3)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35323475

ABSTRACT

To prepare bioactive peptides with high angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) activity, Alcalase was selected from five kinds of protease for hydrolyzing Skipjack tuna (Katsuwonus pelamis) muscle, and its best hydrolysis conditions were optimized using single factor and response surface experiments. Then, the high ACEi protein hydrolysate (TMPH) of skipjack tuna muscle was prepared using Alcalase under the optimum conditions of enzyme dose 2.3%, enzymolysis temperature 56.2 °C, and pH 9.4, and its ACEi activity reached 72.71% at 1.0 mg/mL. Subsequently, six novel ACEi peptides were prepared from TMPH using ultrafiltration and chromatography methods and were identified as Ser-Pro (SP), Val-Asp-Arg-Tyr-Phe (VDRYF), Val-His-Gly-Val-Val (VHGVV), Tyr-Glu (YE), Phe-Glu-Met (FEM), and Phe-Trp-Arg-Val (FWRV), with molecular weights of 202.3, 698.9, 509.7, 310.4, 425.6, and 606.8 Da, respectively. SP and VDRYF displayed noticeable ACEi activity, with IC50 values of 0.06 ± 0.01 and 0.28 ± 0.03 mg/mL, respectively. Molecular docking analysis illustrated that the high ACEi activity of SP and VDRYF was attributed to effective interaction with the active sites/pockets of ACE by hydrogen bonding, electrostatic force, and hydrophobic interaction. Furthermore, SP and VDRYF could significantly up-regulate nitric oxide (NO) production and down-regulate endothelin-1 (ET-1) secretion in HUVECs after 24 h treatment, but also abolish the negative effect of 0.5 µM norepinephrine (NE) on the generation of NO and ET-1. Therefore, ACEi peptides derived from skipjack tuna (K. pelamis) muscle, especially SP and VDRYF, are beneficial components for functional food against hypertension and cardiovascular diseases.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Muscle, Skeletal/chemistry , Peptides , Tuna , Amino Acid Sequence , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Cell Survival/drug effects , Endothelin-1/metabolism , Functional Food , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hydrolysis , Molecular Docking Simulation , Nitric Oxide/metabolism , Peptides/chemistry , Peptides/isolation & purification , Peptides/pharmacology , Protein Hydrolysates/chemistry , Subtilisins/chemistry
12.
Mar Drugs ; 20(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36286450

ABSTRACT

Cardiac arterial bulbs of Skipjack tuna (Katsuwonus pelamis) are rich in elastin, and its hydrolysates are high quality raw materials for daily cosmetics. In order to effectively utilizing Skipjack tuna processing byproducts-cardiac arterial bulbs and to prepare peptides with high antioxidant activity, pepsin was selected from six proteases for hydrolyzing proteins, and the best hydrolysis conditions of pepsin were optimized. Using ultrafiltration and chromatographic methods, eleven antioxidant peptides were purified from protein hydrolysate of tuna cardiac arterial bulbs. Four tripeptides (QGD, PKK, GPQ and GLN) were identified as well as seven pentapeptides (GEQSN, GEEGD, YEGGD, GEGER, GEGQR, GPGLM and GDRGD). Three out of them, namely the tripeptide PKK and the pentapeptides YEGGD and GPGLM exhibited the highest radical scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and superoxide anion assays. They also showed to protect plasmid DNA and HepG2 cells against H2O2-induced oxidative stress. Furthermore, they exhibited high stability under temperature ranged from 20-100 °C, pH values ranged from 3-11, and they simulated gastrointestinal digestion for 240 min. These results suggest that the prepared eleven antioxidant peptides from cardiac arterial bulbs, especially the three peptides PKK, YEGGD, and GPGLM, could serve as promising candidates in health-promoting products due to their high antioxidant activity and their stability.


Subject(s)
Antioxidants , Protein Hydrolysates , Animals , Antioxidants/chemistry , Protein Hydrolysates/chemistry , Tuna/metabolism , Elastin , Superoxides/metabolism , Lipid Peroxidation , Pepsin A , Hydrogen Peroxide/metabolism , Peptides/chemistry , Peptide Hydrolases/metabolism , Sulfonic Acids , Hydrogen-Ion Concentration , Digestion , DNA/metabolism
13.
Mar Drugs ; 19(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204535

ABSTRACT

For utilizing the largest source of marine proteins, Antarctic krill (Euphausia superba) proteins were defatted and hydrolyzed separately using pepsin, alcalase, papain, trypsin, and netrase, and alcalase hydrolysate (EPAH) showed the highest DPPH radical (DPPH·) and hydroxyl radical (HO·) scavenging activity among five hydrolysates. Using ultrafiltration and chromatography methods, fifteen antioxidant peptides were purified from EPAH and identified as Asn-Gln-Met (NQM), Trp-Phe-Pro-Met (WFPM), Gln-Asn-Pro-Thr (QNPT), Tyr-Met-Asn-Phe (YMNF), Ser-Gly-Pro-Ala (SGPA), Ser-Leu-Pro-Tyr (SLPY), Gln-Tyr-Pro-Pro-Met-Gln-Tyr (QYPPMQY), Glu-Tyr-Glu-Ala (EYEA), Asn-Trp-Asp-Asp-Met-Arg-Ile-Val-Ala-Val (NWDDMRIVAV), Trp-Asp-Asp-Met-Glu-Arg-Leu-Val-Met-Ile (WDDMERLVMI), Asn-Trp-Asp-Asp-Met-Glu-Pro-Ser-Phe (NWD-DMEPSF), Asn-Gly-Pro-Asp-Pro-Arg-Pro-Ser-Gln-Gln (NGPDPRPSQQ), Ala-Phe-Leu-Trp-Asn (AFLWA), Asn-Val-Pro-Asp-Met (NVPDM), and Thr-Phe-Pro-Ile-Tyr-Asp-Tyr-Pro-Gln (TFPIYDPQ), respectively, using a protein sequencer and ESI/MS. Among fifteen antioxidant peptides, SLPY, QYPPMQY and EYEA showed the highest scavenging activities on DPPH· (EC50 values of 1.18 ± 0.036, 1.547 ± 0.150, and 1.372 ± 0.274 mg/mL, respectively), HO· (EC50 values of 0.826 ± 0.027, 1.022 ± 0.058, and 0.946 ± 0.011 mg/mL, respectively), and superoxide anion radical (EC50 values of 0.789 ± 0.079, 0.913 ± 0.007, and 0.793 ± 0.056 mg/mL, respectively). Moreover, SLPY, QYPPMQY and EYEA showed strong reducing power, protective capability against H2O2-damaged plasmid DNA, and lipid peroxidation inhibition ability. Furthermore, SLPY, QYPPMQY, and EYEA had high stability under temperatures lower than 80 °C, pH values ranged from 6-8, and simulated GI digestion for 180 min. The results showed that fifteen antioxidant peptides from alcalase hydrolysate of Antarctic krill proteins, especially SLPY, QYPPMQY and EYEA, might serve as effective antioxidant agents applied in food and health products.


Subject(s)
Antioxidants , Biological Products , Euphausiacea/chemistry , Protein Hydrolysates , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Chromatography , Hydrolysis , Oxidative Stress/drug effects , Oxygen Radical Absorbance Capacity , Protein Hydrolysates/chemistry , Protein Hydrolysates/isolation & purification , Protein Hydrolysates/pharmacology , Subtilisins , Ultrafiltration
14.
Mar Drugs ; 18(3)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168851

ABSTRACT

Bioactive peptides from fish collagens with antioxidant properties have become a topic of great interest for health, food, and processing/preservation industries. To explore the high-value utilized way of scales produced during the fish processing, collagen hydrolysates of redlip croaker (Pseudosciaena polyactis) scales were prepared using six different proteases, and the hydrolysate (RSCH) prepared using neutrase showed the highest degree of hydrolysis (21.36 ± 1.18%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging activity (30.97 ± 1.56%) among the six hydrolysates. Subsequently, six antioxidant peptides were purified from RSCH using membrane ultrafiltration and serial chromatography, and their amino acid sequences were identified as DGPEGR, GPEGPMGLE, EGPFGPEG, YGPDGPTG, GFIGPTE, and IGPLGA with molecular masses of 629.61, 885.95, 788.96, 762.75, 733.80, and 526.61 Da, respectively. Among six collagen peptides, GPEGPMGLE, EGPFGPEG, and GFIGPTE exhibited the strongest scavenging activities on DPPH· radical (EC50 0.59, 0.37, and 0.45 mg/mL), hydroxyl radical (EC50 0.45, 0.33, and 0.32 mg/mL), and superoxide anion radical (EC50 0.62, 0.47, and 0.74 mg/mL). GPEGPMGLE, EGPFGPEG, and GFIGPTE showed high inhibiting ability on lipid peroxidation in a linoleic acid model system and protective activities on oxidation-damaged DNA. More importantly, GPEGPMGLE, EGPFGPEG, and GFIGPTE could protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These results suggested that six collagen peptides (RCP1-RCP6), especially GPEGPMGLE, EGPFGPEG, and GFIGPTE, might serve as potential antioxidants applied in nutraceutical and pharmaceutical products.


Subject(s)
Antioxidants/pharmacology , Collagen/chemistry , Hydrogen Peroxide/pharmacology , Peptides/pharmacology , Perciformes , Protein Hydrolysates/pharmacology , Amino Acid Sequence , Animals , Antioxidants/chemistry , Cell Survival/drug effects , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Hep G2 Cells , Humans , Lipid Peroxidation/drug effects , Peptides/chemistry , Protein Hydrolysates/chemistry
15.
Mar Drugs ; 18(3)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164197

ABSTRACT

In the work, defatted muscle proteins of monkfish (Lophius litulon) were separately hydrolyzed by pepsin, trypsin, and in vitro gastrointestinal (GI) digestion methods, and antioxidant peptides were isolated from proteins hydrolysate of monkfish muscle using ultrafiltration and chromatography processes. The antioxidant activities of isolated peptides were evaluated using radical scavenging and lipid peroxidation assays and H2O2-induced model of HepG2 cells. In which, the cell viability, reactive oxygen species (ROS) content, and antioxidant enzymes and malondialdehyde (MDA) levels were measured for evaluating the protective extent on HepG2 cells damaged by H2O2. The results indicated that the hydrolysate (MPTH) prepared using in vitro GI digestion method showed the highest degree of hydrolysis (27.24 ± 1.57%) and scavenging activity on a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (44.54 ± 3.12%) and hydroxyl radical (41.32 ± 2.73%) at the concentration of 5 mg protein/mL among the three hydrolysates. Subsequently, thirteen antioxidant peptides (MMP-1 to MMP-13) were isolated from MPTH. According to their DPPH radical and hydroxyl radical scavenging activity, three peptides with the highest antioxidant activity were selected and identified as EDIVCW (MMP-4), MEPVW (MMP-7), and YWDAW (MMP-12) with molecular weights of 763.82, 660.75, and 739.75 Da, respectively. EDIVCW, MEPVW, and YWDAW showed high scavenging activities on DPPH radical (EC50 0.39, 0.62, and 0.51 mg/mL, respectively), hydroxyl radical (EC50 0.61, 0.38, and 0.32 mg/mL, respectively), and superoxide anion radical (EC50 0.76, 0.94, 0.48 mg/mL, respectively). EDIVCW and YWDAW showed equivalent inhibiting ability on lipid peroxidation with glutathione in the linoleic acid model system. Moreover, EDIVCW, MEPVW, and YWDAW had no cytotoxicity to HepG2 cells at the concentration of 100.0 µM and could concentration-dependently protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These present results indicated that the protein hydrolysate and isolated antioxidant peptides from monkfish muscle, especially YWDAW could serve as powerful antioxidants applied in the treatment of some liver diseases and healthcare products associated with oxidative stress.


Subject(s)
Antioxidants/pharmacology , Fishes , Muscle, Skeletal/chemistry , Peptides/pharmacology , Protein Hydrolysates/pharmacology , Animals , Antioxidants/chemistry , Cell Survival/drug effects , Free Radical Scavengers/pharmacology , Hep G2 Cells , Humans , Hydrogen Peroxide/toxicity , Lipid Peroxidation/drug effects , Matrix Metalloproteinases/chemistry , Peptides/chemistry , Protective Agents/pharmacology , Protein Hydrolysates/chemistry , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
16.
Molecules ; 25(7)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252312

ABSTRACT

Neuropeptides are released by neurons that are involved in a wide range of brain functions, such as food intake, metabolism, reproduction, and learning and memory. A full-length cDNA sequence of an FMRFamide gene isolated from the cuttlefish Sepia pharaonis (designated as SpFMRFamide) was cloned. The predicted precursor protein contains one putative signal peptide and four FMRFamide-related peptides. Multiple amino acid and nucleotide sequence alignments showed that it shares 97% similarity with the precursor FMRFamides of Sepiella japonica and Sepia officinalis and shares 93% and 92% similarity with the SpFMRFamide gene of the two cuttlefish species, respectively. Moreover, the phylogenetic analysis also suggested that SpFMRFamide and FMRFamides from S. japonica and S. officinalis belong to the same sub-branch. Tissue expression analysis confirmed that SpFMRFamide was widely distributed among tissues and predominantly expressed in the brain at the three development stages. The combined effects of SpFMRFamide+SpGnRH and SpFLRFamide+SpGnRH showed a marked decrease in the level of the total proteins released in the CHO-K1 cells. This is the first report of SpFMRFamide in S. pharaonis and the results may contribute to future studies of neuropeptide evolution or may prove useful for the development of aquaculture methods for this cuttlefish species.


Subject(s)
Cloning, Molecular/methods , FMRFamide/genetics , FMRFamide/metabolism , Sepia/growth & development , Animals , Aquaculture , Brain/growth & development , CHO Cells , Cricetulus , FMRFamide/pharmacology , Gene Expression Regulation, Developmental , Gonadotropin-Releasing Hormone/pharmacology , Phylogeny , Proteome/drug effects , Sepia/genetics , Sepia/metabolism , Sequence Homology , Tissue Distribution
17.
Mar Drugs ; 17(5)2019 Apr 27.
Article in English | MEDLINE | ID: mdl-31035632

ABSTRACT

In this report, protein hydrolysate (TGH) of blood cockle (Tegillarca granosa) was prepared using a two-enzyme system (Alcalase treatment for 1.5 h following Neutrase treatment for 1.5 h). Subsequently, six antioxidant peptides were isolated from TGH using ultrafiltration and chromatography methods, and their amino acid sequences were identified as EPLSD, WLDPDG, MDLFTE, WPPD, EPVV, and CYIE with molecular weights of 559.55, 701.69, 754.81, 513.50, 442.48, and 526.57 Da, respectively. In which, MDLFTE and WPPD exhibited strong scavenging activities on DPPH radical (EC50 values of 0.53 ± 0.02 and 0.36 ± 0.02 mg/mL, respectively), hydroxy radical (EC50 values of 0.47 ± 0.03 and 0.38 ± 0.04 mg/mL, respectively), superoxide anion radical (EC50 values of 0.75 ± 0.04 and 0.46 ± 0.05 mg/mL, respectively), and ABTS cation radical (EC50 values of 0.96 ± 0.08 and 0.54 ± 0.03 mg/mL, respectively). Moreover, MDLFTE and WPPD showed high inhibiting ability on lipid peroxidation. However, MDLFTE and WPPD were unstable and could not retain strong antioxidant activity at high temperatures (>80 °C for 0.5 h), basic pH conditions (pH > 9 for 2.5 h), or during simulated GI digestion. In addition, the effect of simulated gastrointestinal digestion on TGP4 was significantly weaker than that on MDLFTE. Therefore, MDLFTE and WPPD may be more suitable for serving as nutraceutical candidates in isolated forms than as food ingredient candidates in functional foods and products.


Subject(s)
Aquatic Organisms , Bivalvia , Free Radical Scavengers/pharmacology , Peptides/pharmacology , Protein Hydrolysates/chemistry , Amino Acid Sequence , Animals , Dietary Supplements , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Functional Food , Hot Temperature , Hydrogen-Ion Concentration , Lipid Peroxidation/drug effects , Peptides/chemistry , Peptides/isolation & purification , Protein Hydrolysates/isolation & purification
18.
Mar Drugs ; 17(4)2019 Apr 13.
Article in English | MEDLINE | ID: mdl-31013895

ABSTRACT

A previous report indicated that collagen hydrolysate fraction (F7) from Spanish mackerel (Scomberomorous niphonius) skins showed high reducing power and radical scavenging activities on 2,2-Diphenyl-1-picrylhydrazyl (DPPH) (EC50 value of 1.57 mg/mL) and hydroxyl (EC50 value of 1.20 mg/mL). In this work, eight peptides were isolated from F7 and identified as Gly-Pro-Tyr (GPY, 335.31 Da), Gly-Pro-Thr-Gly-Glu (GPTGE, 459.47 Da), Pro-Phe-Gly-Pro-Asp (PFGPD, 531.52 Da), Gly-Pro-Thr-Gly-Ala-Lys (GPTGAKG, 586.65 Da), Pro-Tyr-Gly-Ala-Lys-Gly (PYGAKG, 591.69 Da), Gly-Ala-Thr-Gly-Pro-Gln-Gly (GATGPQG, 586.61 Da), Gly-Pro-Phe-Gly-Pro-Met (GPFGPM, 604.73 Da), and Tyr-Gly-Pro-Met (YGPM, 466.50 Da), respectively. Among them, PFGPD, PYGAKG, and YGPM exhibited strong radical scavenging activities on DPPH (EC50 values of 0.80, 3.02, and 0.72 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), hydroxyl (EC50 values of 0.81, 0.66, and 0.88 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), superoxide anion (EC50 values of 0.91, 0.80, and 0.73 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) cation (EC50 values of 0.86, 1.07, and 0.82 mg/mL for PFGPD, PYGAKG, and YGPM, respectively) in a positive concentration-activity relationship. Furthermore, PFGPD, PYGAKG, and YGPM could effectively reduce Fe3+ to Fe2+ and inhibit lipid peroxidation. Hence, eight collagen peptides from hydrolysate of Spanish mackerel skins might be served as antioxidant candidates for various industrial applications.


Subject(s)
Antioxidants/chemistry , Collagen/chemistry , Collagen/pharmacology , Peptides/chemistry , Peptides/pharmacology , Perciformes/metabolism , Skin/chemistry , Animals , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Protein Hydrolysates/metabolism , Superoxides/metabolism
19.
Mar Drugs ; 17(5)2019 May 03.
Article in English | MEDLINE | ID: mdl-31058809

ABSTRACT

In the work, water-soluble proteins of red stingray (Dasyatis akajei) cartilages were extracted by guanidine hydrochloride and hydrolyzed using trypsin. Subsequently, four antioxidant peptides (RSHP-A, RSHP-B, RSHP-C, and RSHP-D) were isolated from the water-soluble protein hydrolysate while using ultrafiltration and chromatographic techniques, and the amino acid sequences of RSHP-A, RSHP-B, RSHP-C, and RSHP-D were identified as Val-Pro-Arg (VPR), Ile-Glu-Pro-His (IEPH), Leu-Glu-Glu--Glu-Glu (LEEEE), and Ile-Glu-Glu-Glu-Gln (IEEEQ), with molecular weights of 370.46 Da, 494.55 Da, 647.64 Da, and 646.66 Da, respectively. VPR, IEPH, LEEEE, and IEEEQ exhibited good scavenging activities on the DPPH radical (EC50 values of 4.61, 1.90, 3.69, and 4.01 mg/mL, respectively), hydroxyl radical (EC50 values of 0.77, 0.46, 0.70, and 1.30 mg/mL, respectively), superoxide anion radical (EC50 values of 0.08, 0.17, 0.15, and 0.16 mg/mL, respectively), and ABTS cation radical (EC50 values of 0.15, 0.11, 0.19, and 0.18 mg/mL, respectively). Among the four isolated antioxidant peptides, IEPH showed the strongest reducing power and lipid peroxidation inhibition activity, but LEEEE showed the highest Fe2+-chelating ability. The present results suggested that VPR, IEPH, LEEEE, and IEEEQ might have the possibility of being an antioxidant additive that is used in functional food and pharmaceuticals.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Peptides/chemistry , Peptides/pharmacology , Amino Acid Sequence , Animals , Antioxidants/isolation & purification , Cartilage/chemistry , Hydroxyl Radical , Peptides/isolation & purification , Protein Hydrolysates , Skates, Fish , Superoxides
20.
Mar Drugs ; 17(2)2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30678362

ABSTRACT

In China, a large amount of fish bones are produced during the processing of tuna cans production. For full use of those by-products, gelatin (STB-G) with a yield of 6.37 ± 0.64% was extracted from skipjack tuna (Katsuwonus pelamis) bone using water at 60 °C for 8 h. Amino acid analysis showed that STB-G contained Gly (340.3 residues/1000 residues) as the major amino acid and its imino acid content was 177.3 residues/1000 residues. Amino acid composition, SDS-PAGE, and Fourier transform infrared (FTIR) spectrum investigations confirmed that the physicochemical properties of STB-G were similar to those of type I collagen from skipjack tuna bone (STB-C), but partial high molecular weight components of STB-G were degraded during the extraction process, which induced that the gelatin was easier to be hydrolyzed by protease than mammalian gelatins and was suitable for preparation of hydrolysate. Therefore, STB-G was hydrolyzed under in vitro gastrointestinal digestion (pepsin-trypsin system) and five antioxidant peptides were purified from the resulted hydrolysate (STB-GH) and identified as GPDGR, GADIVA, GAPGPQMV, AGPK, and GAEGFIF, respectively. Among the gelatin hydrolysate, fractions, and isolated peptides, GADIVA and GAEGFIF exhibited the strongest scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (EC50 0.57 and 0.30 mg/mL), hydroxyl radical (EC50 0.25 and 0.32 mg/mL), superoxide anion radical (EC50 0.52 and 0.48 mg/mL), and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical (EC50 0.41 and 0.21 mg/mL). Moreover, GADIVA and GAEGFIF showed a high inhibiting ability on lipid peroxidation in a linoleic acid model system. The strong activities of five isolated peptides profited by their small molecular sizes and the antioxidant amino acid residues in their sequences. These results suggested that five isolated peptides (STP1⁻STP5), especially GADIVA and GAEGFIF, might serve as potential antioxidants applied in health food industries.


Subject(s)
Antioxidants/chemistry , Bone and Bones/chemistry , Gelatin/chemistry , Peptides/chemistry , Protein Hydrolysates/chemistry , Tuna , Amino Acids/chemistry , Animals , Biphenyl Compounds , Hydrolysis , Hydroxyl Radical , Picrates , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL