Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nucleic Acids Res ; 50(6): 3445-3455, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35253884

ABSTRACT

Concatemers of d(TCCC) that were first detected through their association with deletions at the RACK7 locus, are widespread throughout the human genome. Circular dichroism spectra show that d(GGGA)n sequences form G-quadruplexes when n > 3, while i-motif structures form at d(TCCC)n sequences at neutral pH when n ≥ 7 in vitro. In the PC3 cell line, deletions are observed only when the d(TCCC)n variant is long enough to form significant levels of unresolved i-motif structure at neutral pH. The presence of an unresolved i-motif at a representative d(TCCC)n element at RACK7 was suggested by experiments showing that that the region containing the d(TCCC)9 element was susceptible to bisulfite attack in native DNA and that d(TCCC)9 oligo formed an i-motif structure at neutral pH. This in turn suggested that that the i-motif present at this site in native DNA must be susceptible to bisulfite mediated deamination even though it is a closed structure. Bisulfite deamination of the i-motif structure in the model oligodeoxynucleotide was confirmed using mass spectrometry analysis. We conclude that while G-quadruplex formation may contribute to spontaneous mutation at these sites, deletions actually require the potential for i-motif to form and remain unresolved at neutral pH.


Subject(s)
G-Quadruplexes , Circular Dichroism , DNA/chemistry , DNA/genetics , Genome, Human , Humans , Hydrogen-Ion Concentration
2.
Microb Pathog ; 184: 106380, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37821049

ABSTRACT

In developing countries, diarrhoea is a major issue of concern, where consistent use of antibiotics has resulted in several side effects along with development of resistance among pathogens against these antibiotics. Since natural products are becoming the treatment of choice, therefore present investigation involves mechanistic evaluation of antidiarrhoeal potential of Begonia roxburghii and its marker rutin against Shigella flexneri (SF) induced diarrhoea in rats following in vitro, in vivo and in silico protocols. The roots of the plant are used as vegetable in the North East India and are also used traditionally in treating diarrhoea. Phytochemically standardized ethanolic extract of B. roxburghii (EBR) roots and its marker rutin were first subjected to in vitro antibacterial evaluation against SF. Diarrhoea was induced in rats using suspension of SF and various diarrhoeagenic parameters were examined after first, third and fifth day of treatment at 100, 200 and 300 mg/kg, p.o. with EBR and 50 mg/kg, p.o. with rutin respectively. Additionally, density of SF in stools, stool water content, haematological and biochemical parameters, cytokine profiling, ion concentration, histopathology and Na+/K+-ATPase activity were also performed. Molecular docking and dynamics simulation studies of ligand rutin was studied against secreted extracellular protein A (Sep A, PDB: 5J44) from SF and Inducible nitric oxide synthase (iNOS, PDB: 1DD7) followed by network pharmacology. EBR and rutin demonstrated a potent antibacterial activity against SF and also showed significant recovery from diarrhoea (EBR: 81.29 ± 0.91% and rutin: 75.27 ± 0.89%) in rats after five days of treatment. EBR and rutin also showed significant decline in SF density in stools, decreased cytokine expression, potential antioxidant activity, cellular proliferative nature and recovered ion loss due to enhanced Na+/K+-ATPase activity, which was also supported by histopathology. Rutin showed a very high docking score of -11.61 and -9.98 kcal/mol against iNOS and Sep A respectively and their stable complex was also confirmed through dynamics, while network pharmacology suggested that, rutin is quite capable of modulating the pathways of iNOS and Sep A. Thus, we may presume that rutin played a key role in the observed antidiarrhoeal activity of B. roxburghii against SF induced diarrhoea.


Subject(s)
Begoniaceae , Rutin , Rats , Animals , Rutin/pharmacology , Rutin/therapeutic use , Shigella flexneri , Begoniaceae/metabolism , Antidiarrheals/therapeutic use , Nitric Oxide Synthase Type II/metabolism , Molecular Docking Simulation , Diarrhea/drug therapy , Diarrhea/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cytokines/metabolism , Adenosine Triphosphatases/metabolism
3.
Bioorg Chem ; 139: 106720, 2023 10.
Article in English | MEDLINE | ID: mdl-37480814

ABSTRACT

The technology known asPROTACs (PROteolysisTArgeting Chimeras) is a method of protein degradation. Utilising bifunctional small molecules, the ubiquitin-proteosome system (UPS) is used to induce the ubiquitination and degradation of target proteins. In addition to being novel chemical knockdown agents for biological studies that are catalytic, reversible, and rapid, PROTACs used in the treatment for disorders like cancer, immunological disorders, viral diseases, and neurological disorders. The protein degradation field has advanced quickly over the last two years, with a significant rise in research articles on the subject as well as a quick rise in smallmolecule degraders that are currently in or will soon enter the clinical stage. Other new degrading technologies, in addition to PROTAC and molecular glue technology, are also emerging rapidly. In this review article, we mainly focuses on various PROTAC molecules designed with special emphasis on targeted cellular pathways for different diseases i.e., cancer, Viral diseases Immune disorders, Neurodegenerative diseases, etc. We discussed about new technologies based on PROTACs such as Antibody PROTAC, Aptamers, Dual target, Folate caged, TF PROTAC, etc. Also, we listed out the PROTACs which are in clinical trials.


Subject(s)
Proteasome Endopeptidase Complex , Proteolysis Targeting Chimera , Proteolysis , Antibodies , Catalysis
4.
Molecules ; 28(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894491

ABSTRACT

Staphylococcus aureus is a common human pathogen. Methicillin-resistant Staphylococcus aureus (MRSA) infections pose significant and challenging therapeutic difficulties. MRSA often acquires the non-native gene PBP2a, which results in reduced susceptibility to ß-lactam antibiotics, thus conferring resistance. PBP2a has a lower affinity for methicillin, allowing bacteria to maintain peptidoglycan biosynthesis, a core component of the bacterial cell wall. Consequently, even in the presence of methicillin or other antibiotics, bacteria can develop resistance. Due to genes responsible for resistance, S. aureus becomes MRSA. The fundamental premise of this resistance mechanism is well-understood. Given the therapeutic concerns posed by resistant microorganisms, there is a legitimate demand for novel antibiotics. This review primarily focuses on PBP2a scaffolds and the various screening approaches used to identify PBP2a inhibitors. The following classes of compounds and their biological activities are discussed: Penicillin, Cephalosporins, Pyrazole-Benzimidazole-based derivatives, Oxadiazole-containing derivatives, non-ß-lactam allosteric inhibitors, 4-(3H)-Quinazolinones, Pyrrolylated chalcone, Bis-2-Oxoazetidinyl macrocycles (ß-lactam antibiotics with 1,3-Bridges), Macrocycle-embedded ß-lactams as novel inhibitors, Pyridine-Coupled Pyrimidinones, novel Naphthalimide corbelled aminothiazoximes, non-covalent inhibitors, Investigational-ß-lactam antibiotics, Carbapenem, novel Benzoxazole derivatives, Pyrazolylpyridine analogues, and other miscellaneous classes of scaffolds for PBP2a. Additionally, we discuss the penicillin-binding protein, a crucial target in the MRSA cell wall. Various aspects of PBP2a, bacterial cell walls, peptidoglycans, different crystal structures of PBP2a, synthetic routes for PBP2a inhibitors, and future perspectives on MRSA inhibitors are also explored.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Humans , Penicillin-Binding Proteins/chemistry , Methicillin-Resistant Staphylococcus aureus/metabolism , Methicillin/metabolism , Methicillin/pharmacology , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Monobactams/metabolism , Bacterial Proteins/chemistry , Microbial Sensitivity Tests
5.
Bioorg Med Chem Lett ; 73: 128886, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35835380

ABSTRACT

There are thousands of compounds shown to interact with G-quadruplex DNA, yet very few which target i-motif (iM) DNA. Previous work showed that tobramycin can interact with iM- DNA, indicating the potential for sugar-molecules to target these structures. Computational approaches indicated that the sugar-containing natural products baicalin and geniposidic acid had potential to target iM-DNA. We assessed the DNA interacting properties of these compounds using FRET-based DNA melting and a fluorescence-based displacement assay using iM-DNA structures from the human telomere and the insulin linked polymorphic region (ILPR), as well as complementary G-quadruplex and double stranded DNA. Both baicalin and geniposidic acid show promise as iM-interacting compounds with potential for use in experiments into the structure and function of i-motif forming DNA sequences and present starting points for further synthetic development of these as probes for iM-DNA.


Subject(s)
Biological Products , G-Quadruplexes , DNA/chemistry , Humans , Nucleic Acid Denaturation , Sugars
6.
Mol Divers ; 26(1): 265-278, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33786727

ABSTRACT

Transmembrane protease serine-2 (TMPRSS2) is a cell-surface protein expressed by epithelial cells of specific tissues including those in the aerodigestive tract. It helps the entry of novel coronavirus (n-CoV) or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the host cell. Successful inhibition of the TMPRSS2 can be one of the crucial strategies to stop the SARS-CoV-2 infection. In the present study, a set of bioactive molecules from Morus alba Linn. were screened against the TMPRSS2 through two widely used molecular docking engines such as Autodock vina and Glide. Molecules having a higher binding affinity toward the TMPRSS2 compared to Camostat and Ambroxol were considered for in-silico pharmacokinetic analyses. Based on acceptable pharmacokinetic parameters and drug-likeness, finally, five molecules were found to be important for the TMPRSS2 inhibition. A number of bonding interactions in terms of hydrogen bond and hydrophobic interactions were observed between the proposed molecules and ligand-interacting amino acids of the TMPRSS2. The dynamic behavior and stability of best-docked complex between TRMPRSS2 and proposed molecules were assessed through molecular dynamics (MD) simulation. Several parameters from MD simulation have suggested the stability between the protein and ligands. Binding free energy of each molecule calculated through MM-GBSA approach from the MD simulation trajectory suggested strong affection toward the TMPRSS2. Hence, proposed molecules might be crucial chemical components for the TMPRSS2 inhibition.


Subject(s)
COVID-19 Drug Treatment , Morus , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2 , Serine , Virus Internalization
7.
Bioorg Chem ; 115: 105242, 2021 10.
Article in English | MEDLINE | ID: mdl-34392175

ABSTRACT

Enoyl acyl carrier protein reductase (InhA) is a key enzyme involved in fatty acid synthesis mainly mycolic acid biosynthesis that is a part of NADH dependent acyl carrier protein reductase family. The aim of the present literature is to underline the different scaffolds or enzyme inhibitors that inhibit mycolic acid biosynthesis mainly cell wall synthesis by inhibiting enzyme InhA. Various scaffolds were identified based on the screening technologies like high throughput screening, encoded library technology, fragment-based screening. The compounds studied include indirect inhibitors (Isoniazid, Ethionamide, Prothionamide) and direct inhibitors (Triclosan/Diphenyl ethers, Pyrrolidine Carboxamides, Pyrroles, Acetamides, Thiadiazoles, Triazoles) with better efficacy against drug resistance. Out of the several scaffolds studied, pyrrolidine carboxamides were found to be the best molecules targeting InhA having good bioavailability properties and better MIC. This review provides with a detailed information, analysis, structure activity relationship and useful insight on various scaffolds as InhA inhibitors.


Subject(s)
Antitubercular Agents/pharmacology , Drug Discovery , Inhibins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Dose-Response Relationship, Drug , Humans , Inhibins/metabolism , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
8.
J Am Chem Soc ; 142(49): 20600-20604, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33253551

ABSTRACT

Guanine- and cytosine-rich nucleic acid sequences have the potential to form secondary structures such as G-quadruplexes and i-motifs, respectively. We show that stabilization of G-quadruplexes using small molecules destabilizes the i-motifs, and vice versa, indicating these gene regulatory controllers are interdependent in human cells. This has important implications as these structures are predominately considered as isolated structural targets for therapy, but their interdependency highlights the interplay of both structures as an important gene regulatory switch.


Subject(s)
G-Quadruplexes , Base Sequence , Cell Cycle Checkpoints/drug effects , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Chromatin/metabolism , Ellipticines/pharmacology , G-Quadruplexes/drug effects , Genetic Loci , Humans , Ligands , MCF-7 Cells
9.
J Mol Recognit ; 33(7): e2838, 2020 07.
Article in English | MEDLINE | ID: mdl-32060998

ABSTRACT

Dengue infection is the most common arthropod-borne disease caused by dengue viruses, predominantly affecting millions of human beings annually. To find out promising chemical entities for therapeutic application in Dengue, in the current research, a multi-step virtual screening effort was conceived to screen out the entire "screening library" of the Asinex database. Initially, through "Lipinski rule of five" filtration criterion almost 0.6 million compounds were collected and docked with NS3-NS2B protein. Thereby, the chemical space was reduced to about 3500 compounds through the analysis of binding affinity obtained from molecular docking study in AutoDock Vina. Further, the "Virtual Screening Workflow" (VSW) utility of Schrödinger suite was used, which follows a stepwise multiple docking programs such as - high-throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) docking, and in postprocessing analysis the MM-GBSA based free binding energy calculation. Finally, five potent molecules were proposed as potential inhibitors for the dengue NS3-NS2B protein based on the investigation of molecular interactions map and protein-ligand fingerprint analyses. Different pharmacokinetics and drug-likeness parameters were also checked, which favour the potentiality of selected molecules for being drug-like candidates. The molecular dynamics (MD) simulation analyses of protein-ligand complexes were explained that NS3-NS2B bound with proposed molecules quite stable in dynamic states as observed from the root means square deviation (RMSD) and root means square fluctuation (RMSF) parameters. The binding free energy was calculated using MM-GBSA method from the MD simulation trajectories revealed that all proposed molecules possess such a strong binding affinity towards the dengue NS3-NS2B protein. Therefore, proposed molecules may be potential chemical components for effective inhibition of dengue NS3-NS2B protein subjected to experimental validation.


Subject(s)
Dengue/drug therapy , Protease Inhibitors/therapeutic use , Molecular Docking Simulation , Molecular Dynamics Simulation , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
11.
Biomed Chromatogr ; 32(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-28940404

ABSTRACT

Capecitabine is a prodrug of 5-flurouracil, employed as a broad spectrum chemotherapeutic agent. It is also used as monotherapy or a combination chemotherapy agent for the treatment of colorectal cancer. Capecitabine is administered in combination with oxaliplatin and hence it is essential to determine that co-administration does not affect its metabolism. To determine the plasma concentration of capecitabine a simple HPTLC method was developed and validated. Blood samples from 12 patients with colorectal cancer were collected and analyzed by the HPTLC method with a reference internal standard. Out of these 12 patients, six were treated with capecitabine monotherapy and another six were treated with capecitabine + oxaliplatin combination therapy. The results of analysis indicated that there was no significant drug-drug interaction and the co-administration of oxaliplatin did not affect the metabolism of capecitabine. This method is sensitive, robust and specific and allows analysis of multiple samples simultaneously, making it suitable for therapeutic drug monitoring of capecitabine.


Subject(s)
Antineoplastic Agents/blood , Capecitabine/blood , Chromatography, High Pressure Liquid/methods , Chromatography, Thin Layer/methods , Colorectal Neoplasms/drug therapy , Drug Monitoring/methods , Antineoplastic Agents/pharmacokinetics , Capecitabine/pharmacokinetics , Drug Stability , Humans , Linear Models , Reproducibility of Results , Sensitivity and Specificity
12.
IBRO Neurosci Rep ; 16: 8-42, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38169888

ABSTRACT

Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid ß (Aß), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3ß, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.

13.
Heliyon ; 10(5): e26802, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434349

ABSTRACT

Tuberculosis has been a challenge to the world since prehistoric times, and with the advent of drug-resistant strains, it has become more challenging to treat this infection. Ethionamide (ETH), a second-line drug, acts as a prodrug and targets mycolic acid synthesis by targeting the enoyl-acyl carrier protein reductase (InhA) enzyme. Mycobacterium tuberculosis (Mtb) EthR is an ethA gene repressor required to activate prodrug ETH. Recent studies suggest targeting the EthR could lead to newer drug molecules that would help better activate the ETH or complement this process. In this report, we have attempted and successfully identified three new molecules from the drug repurposing library that can target EthR protein and function as ETH boosters. These molecules were obtained after rigorous filtering of the database for their physicochemical, toxicological properties and safety. The molecular docking, molecular dynamics simulations and binding energy studies yielded three compounds, Ethyl (2-amino-4-((4-fluorobenzyl)amino)phenyl)carbamate) (L1), 2-((2,2-Difluorobenzo [d] [1,3]dioxol-5-yl)amino)-2-oxoethyl (E)-3-(5-bromofuran-2-yl)acrylate (L2), and N-(2,3-Dihydrobenzo [b] [1,4]dioxin-6-yl)-4-(2-((4-fluorophenyl)amino)-2-oxoethoxy)-3-methoxy benzamide (L3) are potential EthR inhibitors. We applied machine learning methods to evaluate these molecules for toxicity and synthesisability, suggesting safety and ease of synthesis for these molecules. These molecules are known for other pharmacological activities and can be repurposed faster as adjuvant therapy for tuberculosis.

14.
Comput Biol Chem ; 110: 108034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430612

ABSTRACT

Tuberculosis (TB) is one of the life-threatening infectious diseases with prehistoric origins and occurs in almost all habitable parts of the world. TB mainly affects the lungs, and its etiological agent is Mycobacterium tuberculosis (Mtb). In 2022, more than 10 million people were infected worldwide, and 1.3 million were children. The current study considered the in-silico and machine learning (ML) approaches to explore the potential anti-TB molecules from the SelleckChem database against Enoyl-Acyl Carrier Protein Reductase (InhA). Initially, the entire database of ∼ 119000 molecules was sorted out through drug-likeness. Further, the molecular docking study was conducted to reduce the chemical space. The standard TB drug molecule's binding energy was considered a threshold, and molecules found with lower affinity were removed for further analyses. Finally, the molecules were checked for the pharmacokinetic and toxicity studies, and compounds found to have acceptable pharmacokinetic parameters and were non-toxic were considered as final promising molecules for InhA. The above approach further evaluated five molecules for ML-based toxicity and synthetic accessibility assessment. Not a single molecule was found toxic and each of them was revealed as easy to synthesise. The complex between InhA and proposed and standard molecules was considered for molecular dynamics simulation. Several statistical parameters showed the stability between InhA and the proposed molecule. The high binding affinity was also found for each of the molecules towards InhA using the MM-GBSA approach. Hence, the above approaches and findings exposed the potentiality of the proposed molecules against InhA.


Subject(s)
Machine Learning , Molecular Docking Simulation , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/toxicity , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure
15.
Curr Top Med Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963108

ABSTRACT

In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAget-ing Chimeras) technology has been particularly pronounced since its introduction in the 21st cen-tury. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This ex-panded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders. This comprehensive review explores the broadening landscape of PROTAC application, high-lighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives. To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Time-resolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance. Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a ver-satile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.

16.
Comput Biol Med ; 176: 108573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723396

ABSTRACT

In this work we investigated the Pks13-TE domain, which plays a critical role in the viability of the mycobacteria. In this report, we have used a series of AI and Physics-based tools to identify Pks13-TE inhibitors. The Reinvent 4, pKCSM, KDeep, and SwissADME are AI-ML-based tools. AutoDock Vina, PLANTS, MDS, and MM-GBSA are physics-based methods. A combination of these methods yields powerful support in the drug discovery cycle. Known inhibitors of Pks13-TE were collected, curated, and used as input for the AI-based tools, and Mol2Mol molecular optimisation methods generated novel inhibitors. These ligands were filtered based on physics-based methods like molecular docking and molecular dynamics using multiple tools for consensus generation. Rigorous analysis was performed on the selected compounds to reduce the chemical space while retaining the most promising compounds. The molecule interactions, stability of the protein-ligand complexes and the comparable binding energies with the native ligand were essential factors for narrowing the ligands set. The filtered ligands from docking, MDS, and binding energy colocations were further tested for their ADMET properties since they are among the essential criteria for this series of molecules. It was found that ligands Mt1 to Mt6 have excellent predicted pharmacokinetic, pharmacodynamic and toxicity profiles and good synthesisability.


Subject(s)
Molecular Docking Simulation , Mycobacterium tuberculosis , Polyketide Synthases , Polyketide Synthases/metabolism , Polyketide Synthases/chemistry , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Artificial Intelligence , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/pharmacokinetics , Molecular Dynamics Simulation , Ligands , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Drug Discovery
17.
J Biomol Struct Dyn ; : 1-12, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37599503

ABSTRACT

Since diarrhoea is reportedly the third largest cause of fatality among kids, therefore it is considered to be one of the major areas of concerns among developing nations. The main causative agents of diarrhoea include Escherichia coli, Vibrio cholera, and Shigella spp where E. coli shares the maximum contribution. The roots of the plant Eriosema chinense Vogel. (Fabaceae) are traditionally used by the native tribes of Meghalaya, India to treat diarrhoea. From previous reports, the plant and its marker eriosematin E have been reported to have antidiarrhoeal potential against pathogenic and nonpathogenic diarrhoea. Therefore, the objective of the current investigation was to use in silico studies to determine the efficacy of eriosematin E against different diarrhoeagenic strains of E. coli. Six different pathovars of E. coli i.e. enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohaemorrhagic E. coli (EHEC), enteroaggregative E. coli (EAEC), uropathogenic E. coli (UPEC) and enteroinvasive E. coli (EIEC) were subjected to docking simulation studies utilizing Glide module of Schrodinger Maestro 2018-1 MM Share Version. Based on the obtained binding energy and balance between H-bonding, hydrophobic, and salt bridge interactions eriosematin E was found to be most effective against EPEC followed by EAEC and ETEC, while UPEC and EHEC were moderately affected. The molecular dynamics studies suggested a higher affinity of eriosematin E towards heat-labile enterotoxin b-pentamer from ETEC. The in vitro antibacterial studies against the universal strain S. aureus 12981 and E. coli 10418 revealed the effectiveness of eriosematin E showing MIC values of ≥256 µg/mL.Communicated by Ramaswamy H. Sarma.

18.
Environ Sustain (Singap) ; 4(3): 533-541, 2021.
Article in English | MEDLINE | ID: mdl-38624491

ABSTRACT

The on-going coronavirus disease 19 (COVID-19) pandemic has caused a very high number of infections and deaths around the globe. The absence of vaccine/drugs to counter COVID-19 has scrambled scientific communities to repurpose available medicines/vaccines. As the virus is known to mutate, using the whole genome sequences, the transmission dynamics and molecular evolutionary models were evaluated for South Asian countries to determine the evolutionary rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Phylogenetic analyses were done using the data available on National Center for Biotechnology Information (NCBI). Different nucleotide substitution models and molecular evolutionary models were analyzed to see how SARS-CoV-2 was transmitted in the populations. Models for the viral 'S' and 'N' protein from selected strains were constructed, validated, and analyzed to determine the mutations and discover the potential therapeutics against this deadly viral disease. We found that the Hasegawa-Kishino-Yano (HKY) nucleotide substitution model was the best model with the lowest Bayesian information criterion (BIC) scores. Molecular clock RelTime analysis showed the evolutionary rate of SARS-CoV-2 substitutions in the genome was at 95% confidence interval, and heterogeneity was observed. Several mutations in the viral S-protein were found with one in the receptor-binding domain concerning SARS-CoV-2/Wuhan-1/S-Protein. Nucleocapsid protein also showed mutations in the strains from India and Sri Lanka. Our analysis suggests that SARS-CoV-2 is evolving at a diverse rate. The mutation leading to substitution in the nucleotide sequence occurred in the genome during the transmission of COVID-19 among individuals in the South Asian countries.

19.
ChemMedChem ; 16(20): 3136-3148, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34288519

ABSTRACT

Tuberculosis is a prominent aliment throughout the world and a leading cause of mortality among infectious diseases. Drug development for multi-drug resistance and reducing the current therapy time is the top priority. Mycobacterial membrane protein large 3 (MmpL3) is a promising target with high potential, however, it has not been explored to its greatest potential. It is a membrane transporter that translocates trehalose-monomycolate which is a precursor for the synthesis of mycolic acid that is essential for the synthesis of the bacterial cell wall and is pathogenic in nature. In this review, we have discussed the current development of MmpL3 inhibitors, different scaffolds, their derivatives, and their synthetic schemes and provide insight into the challenges in developing these inhibitors.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Humans , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Molecular Structure , Tuberculosis/metabolism
20.
Heliyon ; 7(3): e06227, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33869816

ABSTRACT

The androgen receptor inhibitor, Enzalutamide, proved effective against castration resistance prostate cancer, has demonstrated clinical benefits and increased survival rate in men. However, AR mutation (F876L) converts Enzalutamide from antagonist to agonist indicating a rapid evolution of resistance. Hence, our goal is to overcome this resistance mechanism by designing and developing novel Enzalutamide analogues. We designed a dataset of Enzalutamide derivatives using Enzalutamide's shape and electrostatic features to match with pharmacophoric features essential for tight binding with the androgen receptor. Based on this design strategy ten novel derivatives were selected including 5,5-dimethyl-3-(6-substituted benzo[d]thia/oxazol-2-yl)-2-thioxo-1-(4-(trifluoromethyl)pyridin-2-yl)imidazolidin-4-one (6a-j) for synthesis. All the compounds were evaluated in-vitro on prostate cancer cell lines DU-145, LNCaP and PC3. Interestingly, two compounds 3-(6-hydroxybenzo[d]thiazol-2-yl)-5,5-dimethyl-2-thioxo-1-(4-(trifluoromethyl)pyridin-2-yl) imidazolidin-4-one (6c, IC50 - 18.26 to 20.31µM) and 3-(6-hydroxybenzo[d]oxazol-2-yl)-5,5-dimethyl -2-thioxo- 1- (4-(trifluoromethyl) pyridin-2-yl)imidazolidin-4-one (6h, IC50 - 18.26 to 20.31µM) were successful with promising in-vitro antiproliferative activity against prostate cancer cell lines. The binding mechanism of potential androgen receptor inhibitors was further studied by molecular docking, molecular dynamics simulations and MM-GBSA binding free energy calculations and found in agreement with the in vitro studies. It provided strong theoretical support to our hypothesis.

SELECTION OF CITATIONS
SEARCH DETAIL