Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sensors (Basel) ; 19(6)2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30917522

ABSTRACT

Obtaining thermodynamic measurements using rotary-wing unmanned aircraft systems (rwUAS) requires several considerations for mitigating biases from the aircraft and its environment. In this study, we focus on how the method of temperature sensor integration can impact the quality of its measurements. To minimize non-environmental heat sources and prevent any contamination coming from the rwUAS body, two configurations with different sensor placements are proposed for comparison. The first configuration consists of a custom quadcopter with temperature and humidity sensors placed below the propellers for aspiration. The second configuration incorporates the same quadcopter design with sensors instead shielded inside of an L-duct and aspirated by a ducted fan. Additionally, an autopilot algorithm was developed for these platforms to face them into the wind during flight for kinematic wind estimations. This study will utilize in situ rwUAS observations validated against tower-mounted reference instruments to examine how measurements are influenced both by the different configurations as well as the ambient environment. Results indicate that both methods of integration are valid but the below-propeller configuration is more susceptible to errors from solar radiation and heat from the body of the rwUAS.

2.
Sensors (Basel) ; 19(12)2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31213000

ABSTRACT

The deployment of small unmanned aircraft systems (UAS) to collect routine in situ vertical profiles of the thermodynamic and kinematic state of the atmosphere in conjunction with other weather observations could significantly improve weather forecasting skill and resolution. High-resolution vertical measurements of pressure, temperature, humidity, wind speed and wind direction are critical to the understanding of atmospheric boundary layer processes integral to air-surface (land, ocean and sea ice) exchanges of energy, momentum, and moisture; how these are affected by climate variability; and how they impact weather forecasts and air quality simulations. We explore the potential value of collecting coordinated atmospheric profiles at fixed surface observing sites at designated times using instrumented UAS. We refer to such a network of autonomous weather UAS designed for atmospheric profiling and capable of operating in most weather conditions as a 3D Mesonet. We outline some of the fundamental and high-impact science questions and sampling needs driving the development of the 3D Mesonet and offer an overview of the general concept of operations. Preliminary measurements from profiling UAS are presented and we discuss how measurements from an operational network could be realized to better characterize the atmospheric boundary layer, improve weather forecasts, and help to identify threats of severe weather.

3.
Sensors (Basel) ; 19(9)2019 05 10.
Article in English | MEDLINE | ID: mdl-31083477

ABSTRACT

Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation-a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2 . 6 ∘ C and 0.22 ± 0 . 59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS.

4.
Biol Lett ; 8(5): 698-701, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-22628093

ABSTRACT

An international and interdisciplinary Radar Aeroecology Workshop was held at the National Weather Center on 5-6 March 2012 on the University of Oklahoma campus in Norman, OK, USA. The workshop brought together biologists, meteorologists, radar engineers and computer scientists from 22 institutions and four countries. A central motivation behind the Radar Aeroecology Workshop was to foster better communication and cross-disciplinary collaboration among a diverse spectrum of researchers, and promote a better understanding of the ecology of animals that move within and use the Earth's lower atmosphere (aerosphere).


Subject(s)
Telemetry/methods , Weather , Animal Migration , Animals , Atmosphere , Biology/methods , Conservation of Natural Resources , Ecology , Europe , Geography , Interdisciplinary Communication , Oklahoma , Radar , Radio Waves , Software , Time Factors , United States
5.
Sci Rep ; 6: 35637, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27762292

ABSTRACT

The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.


Subject(s)
Biology/methods , Birds/physiology , Chiroptera/physiology , Electromagnetic Phenomena , Flight, Animal , Insecta/physiology , Radar/statistics & numerical data , Animals , Models, Theoretical
6.
Ecol Evol ; 6(19): 7039-7046, 2016 10.
Article in English | MEDLINE | ID: mdl-28725381

ABSTRACT

Bioacoustic localization of bird vocalizations provides unattended observations of the location of calling individuals in many field applications. While this technique has been successful in monitoring terrestrial distributions of calling birds, no published study has applied these methods to migrating birds in flight. The value of nocturnal flight call recordings can increase with the addition of three-dimensional position retrievals, which can be achieved with adjustments to existing localization techniques. Using the time difference of arrival method, we have developed a proof-of-concept acoustic microphone array that allows the three-dimensional positioning of calls within the airspace. Our array consists of six microphones, mounted in pairs at the top and bottom of three 10-m poles, arranged in an equilateral triangle with sides of 20 m. The microphone array was designed using readily available components and costs less than $2,000 USD to build and deploy. We validate this technique using a kite-lofted GPS and speaker package, and obtain 60.1% of vertical retrievals within the accuracy of the GPS measurements (±5 m) and 80.4% of vertical retrievals within ±10 m. The mean Euclidian distance between the acoustic retrievals of flight calls and the GPS truth was 9.6 m. Identification and localization of nocturnal flight calls have the potential to provide species-specific spatial characterizations of bird migration within the airspace. Even with the inexpensive equipment used in this trial, low-altitude applications such as surveillance around wind farms or oil platforms can benefit from the three-dimensional retrievals provided by this technique.

7.
PLoS One ; 8(9): e76616, 2013.
Article in English | MEDLINE | ID: mdl-24086755

ABSTRACT

The atmospheric boundary layer and lower free atmosphere, or aerosphere, is increasingly important for human transportation, communication, environmental monitoring, and energy production. The impacts of anthropogenic encroachment into aerial habitats are not well understood. Insectivorous birds and bats are inherently valuable components of biodiversity and play an integral role in aerial trophic dynamics. Many of these insectivores are experiencing range-wide population declines. As a first step toward gaging the potential impacts of these declines on the aerosphere's trophic system, estimates of the biomass and energy consumed by aerial insectivores are needed. We developed a suite of energetics models for one of the largest and most common avian aerial insectivores in North America, the Purple Martin (Prognesubis). The base model estimated that Purple Martins consumed 412 (± 104) billion insects*y⁻¹ with a biomass of 115,860 (± 29,192) metric tonnes*y⁻¹. During the breeding season Purple Martins consume 10.3 (+ 3.0) kg of prey biomass per km³ of aerial habitat, equal to about 36,000 individual insects*km⁻³. Based on these calculations, the cumulative seasonal consumption of insects*km⁻³ is greater in North America during the breeding season than during other phases of the annual cycle, however the maximum daily insect consumption*km⁻³ occurs during fall migration. This analysis provides the first range-wide quantitative estimate of the magnitude of the trophic impact of this large and common aerial insectivore. Future studies could use a similar modeling approach to estimate impacts of the entire guild of aerial insectivores at a variety of temporal and spatial scales. These analyses would inform our understanding of the impact of population declines among aerial insectivores on the aerosphere's trophic dynamics.


Subject(s)
Ecological and Environmental Phenomena , Insecta , Swallows/physiology , Animals , Population Dynamics
8.
PLoS One ; 7(8): e42737, 2012.
Article in English | MEDLINE | ID: mdl-22876331

ABSTRACT

Interest in forecasting impacts of climate change have heightened attention in recent decades to how animals respond to variation in climate and weather patterns. One difficulty in determining animal response to climate variation is lack of long-term datasets that record animal behaviors over decadal scales. We used radar observations from the national NEXRAD network of Doppler weather radars to measure how group behavior in a colonially-roosting bat species responded to annual variation in climate and daily variation in weather over the past 11 years. Brazilian free-tailed bats (Tadarida brasiliensis) form dense aggregations in cave roosts in Texas. These bats emerge from caves daily to forage at high altitudes, which makes them detectable with Doppler weather radars. Timing of emergence in bats is often viewed as an adaptive trade-off between emerging early and risking predation or increased competition and emerging late which restricts foraging opportunities. We used timing of emergence from five maternity colonies of Brazilian free-tailed bats in south-central Texas during the peak lactation period (15 June-15 July) to determine whether emergence behavior was associated with summer drought conditions and daily temperatures. Bats emerged significantly earlier during years with extreme drought conditions than during moist years. Bats emerged later on days with high surface temperatures in both dry and moist years, but there was no relationship between surface temperatures and timing of emergence in summers with normal moisture levels. We conclude that emergence behavior is a flexible animal response to climate and weather conditions and may be a useful indicator for monitoring animal response to long-term shifts in climate.


Subject(s)
Chiroptera/physiology , Climate , Weather , Animals , Behavior, Animal , Population Dynamics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL