Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cytotherapy ; 23(4): 311-319, 2021 04.
Article in English | MEDLINE | ID: mdl-33246884

ABSTRACT

BACKGROUND AIMS: Induced pluripotent stem cells (iPSCs) have the capacity to generate ß cells in vitro, but the differentiation is incomplete and generates a variable percentage of off-target cells. Single-cell RNA sequencing offers the possibility of characterizing the transcriptional dynamics throughout differentiation and determining the identity of the final differentiation product. METHODS: Single-cell transcriptomics data were obtained from four stages across differentiation of iPSCs into ß cells and from human donor islets. RESULTS: Clustering analysis revealed that iPSCs undertake a full endoderm commitment, and the obtained endocrine pancreatic cells have high homology with mature islets. The iPSC-derived ß cells were devoid of pluripotent residual cells, and the differentiation was pancreas-specific, as it did not generate ectodermal or mesodermal cells. Pseudotime trajectory identified a dichotomic endocrine/non-endocrine cell fate and distinct subgroups in the endocrine branch. CONCLUSIONS: Future efforts to produce ß cells from iPSCs must aim not only to improve the resulting endocrine cell but also to avoid differentiation into non-pancreatic endoderm cells.


Subject(s)
Induced Pluripotent Stem Cells , Islets of Langerhans , Pluripotent Stem Cells , Cell Differentiation , Endoderm , Humans
2.
Pancreatology ; 18(8): 945-953, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30293872

ABSTRACT

BACKGROUND: Despite the recent introduction of new drugs and the development of innovative multi-target treatments, the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains very poor. Even when PDAC is resectable, the rate of local or widespread disease recurrence remains particularly high. Currently, reliable prognostic biomarkers of recurrence are lacking. We decided to explore the potential usefulness of pancreatic developmental regulators as biomarkers of PDAC relapse. METHODS: We analyzed by quantitative real-time PCR the mRNA of selected factors involved either in pancreatic organogenesis (ISL1, NEUROD1, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, PDX1 and PTF1α) or associated with terminally committed pancreatic cells (CHGA, CHGB, GAD2, GCG, HNF6α, INS, KRT19, SYP) in 17 PDAC cell lines and in frozen tumor samples from 41 PDAC patients. RESULTS: High baseline levels of the ISL1, KRT19, PAX6 and PDX1 mRNAs in PDAC cell lines, were risk factors for time-dependent xenograft appearance after subcutaneous injection in CD1-Nude mice. Consistently, in human PDAC samples, high levels of KRT19 mRNA were associated with reduced overall survival and earlier recurrence. Higher levels of PDX1 or PAX6 mRNAs were instead associated with a higher frequency of local recurrence. CONCLUSIONS: Our findings suggest that selected factors associated with pancreas development or its terminal differentiation might be implicated in mechanisms of PDAC progression and/or metastatic spread and that the measurement of their mRNA in tumors might be potentially used to improve patient prognostic stratification and prediction of the relapse site.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/surgery , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Pancreas/embryology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/surgery , Adult , Aged , Animals , Biomarkers, Tumor/analysis , Cell Line, Tumor , Female , Homeobox Protein Nkx-2.2 , Homeodomain Proteins , Humans , Keratin-19/genetics , Male , Mice , Mice, Nude , Middle Aged , Nuclear Proteins , Organogenesis/genetics , Prognosis , Real-Time Polymerase Chain Reaction , Survival Analysis , Transcription Factors , Xenograft Model Antitumor Assays
3.
Front Immunol ; 14: 1323439, 2023.
Article in English | MEDLINE | ID: mdl-38077372

ABSTRACT

Type 1 diabetes (T1D) presents a persistent medical challenge, demanding innovative strategies for sustained glycemic control and enhanced patient well-being. Beta cells are specialized cells in the pancreas that produce insulin, a hormone that regulates blood sugar levels. When beta cells are damaged or destroyed, insulin production decreases, which leads to T1D. Allo Beta Cell Transplantation has emerged as a promising therapeutic avenue, with the goal of reinstating glucose regulation and insulin production in T1D patients. However, the path to success in this approach is fraught with complex immunological hurdles that demand rigorous exploration and resolution for enduring therapeutic efficacy. This exploration focuses on the distinct immunological characteristics inherent to Allo Beta Cell Transplantation. An understanding of these unique challenges is pivotal for the development of effective therapeutic interventions. The critical role of glucose regulation and insulin in immune activation is emphasized, with an emphasis on the intricate interplay between beta cells and immune cells. The transplantation site, particularly the liver, is examined in depth, highlighting its relevance in the context of complex immunological issues. Scrutiny extends to recipient and donor matching, including the utilization of multiple islet donors, while also considering the potential risk of autoimmune recurrence. Moreover, unanswered questions and persistent gaps in knowledge within the field are identified. These include the absence of robust evidence supporting immunosuppression treatments, the need for reliable methods to assess rejection and treatment protocols, the lack of validated biomarkers for monitoring beta cell loss, and the imperative need for improved beta cell imaging techniques. In addition, attention is drawn to emerging directions and transformative strategies in the field. This encompasses alternative immunosuppressive regimens and calcineurin-free immunoprotocols, as well as a reevaluation of induction therapy and recipient preconditioning methods. Innovative approaches targeting autoimmune recurrence, such as CAR Tregs and TCR Tregs, are explored, along with the potential of stem stealth cells, tissue engineering, and encapsulation to overcome the risk of graft rejection. In summary, this review provides a comprehensive overview of the inherent immunological obstacles associated with Allo Beta Cell Transplantation. It offers valuable insights into emerging strategies and directions that hold great promise for advancing the field and ultimately improving outcomes for individuals living with diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Insulins , Islets of Langerhans Transplantation , Humans , Insulin-Secreting Cells/metabolism , Glucose
4.
Cell Rep ; 40(13): 111423, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170817

ABSTRACT

Induced pluripotent stem cells (iPSCs) represent a source from which ß cells can be derived for diabetes replacement therapy. However, their application may be hindered by immune-mediated responses. Although abrogation of major histocompatibility complex class I (MHC-I) can address this issue, it may trigger natural killer (NK) cells through missing-self recognition mechanisms. By profiling the relevant NK-activating ligands on iPSCs during in vitro differentiation into pancreatic ß cells, we find that they express high levels of B7-H3 and CD155. Hypothesizing that such surface ligands could be involved in the amplification of NK-activating signals following missing-self, we generate MHC-I-deprived B7-H3-/-, CD155-/-, and B7-H3-/-/CD155-/- iPSCs. All engineered lines correctly differentiate into insulin-secreting ß cells and are protected from cell lysis mediated by CD16dim and CD16+ NK subpopulations both in vitro and in vivo in NSG mice. Our data support targeted disruption of NK-activating ligands to enhance the transplant compatibility of MHC-I-/- iPSC pancreatic derivatives.


Subject(s)
Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Insulins , Animals , Histocompatibility Antigens Class I/metabolism , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/metabolism , Ligands , Mice
5.
Front Pediatr ; 9: 755365, 2021.
Article in English | MEDLINE | ID: mdl-34970515

ABSTRACT

Aims: Wolfram syndrome type 1 is a rare recessive monogenic form of insulin-dependent diabetes mellitus with progressive neurodegeneration, poor prognosis, and no cure. Based on preclinical evidence we hypothesized that liraglutide, a glucagon-like peptide-1 receptor agonist, may be repurposed for the off-label treatment of Wolfram Syndrome type 1. We initiated an off-label treatment to investigate the safety, tolerability, and efficacy of liraglutide in pediatric patients with Wolfram Syndrome type 1. Methods: Pediatric patients with genetically confirmed Wolfram Syndrome type 1 were offered off-label treatment approved by The Regional Network Coordination Center for Rare Diseases, Pharmacological Research IRCCS Mario Negri, and the internal ethics committee. Four patients were enrolled; none refused nor were excluded or lost during follow-up. Liraglutide was administered as a daily subcutaneous injection. Starting dose was 0.3 mg/day. The dose was progressively increased as tolerated, up to the maximum dose of 1.8 mg/day. The primary outcome was evaluating the safety, tolerability, and efficacy of liraglutide in Wolfram Syndrome type 1 patients. Secondary endpoints were stabilization or improvement of C-peptide secretion as assessed by the mixed meal tolerance test. Exploratory endpoints were stabilization of neurological and neuro-ophthalmological degeneration, assessed by optical coherence tomography, electroretinogram, visual evoked potentials, and magnetic resonance imaging. Results: Four patients aged between 10 and 14 years at baseline were treated with liraglutide for 8-27 months. Liraglutide was well-tolerated: all patients reached and maintained the maximum dose, and none withdrew from the study. Only minor transient gastrointestinal symptoms were reported. No alterations in pancreatic enzymes, calcitonin, or thyroid hormones were observed. At the latest follow-up, the C-peptide area under the curve ranged from 81 to 171% of baseline. Time in range improved in two patients. Neuro-ophthalmological and neurophysiological disease parameters remained stable at the latest follow-up. Conclusions: We report preliminary data on the safety, tolerability, and efficacy of liraglutide in four pediatric patients with Wolfram Syndrome type 1. The apparent benefits both in terms of residual C-peptide secretion and neuro-ophthalmological disease progression warrant further studies on the repurposing of glucagon-like peptide-1 receptor agonists as disease-modifying agents for Wolfram Syndrome type 1.

6.
Cell Transplant ; 27(10): 1548-1560, 2018 10.
Article in English | MEDLINE | ID: mdl-30251567

ABSTRACT

BACKGROUND: New sources of insulin-secreting cells are strongly in demand for treatment of diabetes. Induced pluripotent stem cells (iPSCs) have the potential to generate insulin-producing cells (iß). However, the gene expression profile and secretory function of iß still need to be validated in comparison with native ß cells. METHODS: Two clones of human iPSCs, reprogrammed from adult fibroblasts through integration-free Sendai virus, were differentiated into iß and compared with donor pancreatic islets and EndoC-ßH1, an immortalized human ß cell line. RESULTS: Both clones of iPSCs differentiated into insulin+ cells with high efficiency (up to 20%). iß were negative for pluripotency markers (Oct4, Sox2, Ssea4) and positive for Pdx1, Nkx6.1, Chromogranin A, PC1/3, insulin, glucagon and somatostatin. iß basally secreted C-peptide, glucagon and ghrelin and released insulin in response either to increasing concentration of glucose or a depolarizing stimulus. The comparison revealed that iß are remarkably similar to donor derived islets in terms of gene and protein expression profile and similar level of heterogeneity. The ability of iß to respond to glucose instead was more related to that of EndoC-ßH1. DISCUSSION: We demonstrated that insulin-producing cells generated from iPSCs recapitulate fundamental gene expression profiles and secretory function of native human ß cells.


Subject(s)
Cellular Reprogramming , Fibroblasts/cytology , Induced Pluripotent Stem Cells/cytology , Insulin-Secreting Cells/cytology , Transcriptome , Cells, Cultured , Cellular Reprogramming Techniques , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Sendai virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL