Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Mater ; 22(5): 627-635, 2023 May.
Article in English | MEDLINE | ID: mdl-37055559

ABSTRACT

Alternative solid electrolytes are the next key step in advancing lithium batteries with better thermal and chemical stability. A soft solid electrolyte, (Adpn)2LiPF6 (Adpn, adiponitrile), is synthesized and characterized that exhibits high thermal and electrochemical stability and good ionic conductivity, overcoming several limitations of conventional organic and ceramic materials. The surface of the electrolyte possesses a liquid nano-layer of Adpn that links grains for a facile ionic conduction without high pressure/temperature treatments. Further, the material can quickly self-heal if fractured and provides liquid-like conduction paths via the grain boundaries. A substantially high ion conductivity (~10-4 S cm-1) and lithium-ion transference number (0.54) are obtained due to weak interactions between 'hard' (charge dense) Li+ ions and the 'soft' (electronically polarizable) -C≡N group of Adpn. Molecular simulations predict that Li+ ions migrate at the co-crystal grain boundaries with a (preferentially) lower activation energy Ea and within the interstitial regions between the co-crystals with higher Ea values, where the bulk conductivity is a smaller but extant contribution. These co-crystals establish a special concept of crystal design to increase the thermal stability of LiPF6 by separating ions in the Adpn solvent matrix, and also exhibit a unique mechanism of ion conduction via low-resistance grain boundaries, which contrasts with ceramics or gel electrolytes.

2.
Inorg Chem ; 57(2): 557-564, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29300462

ABSTRACT

The effect on the electrocatalytic oxygen evolution reaction (OER) of cobalt incorporation into the metal oxide sheets of the layered manganese oxide birnessite was investigated. Birnessite and cobalt-doped birnessite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and conductivity measurements. A cobalt:manganese ratio of 1:2 resulted in the most active catalyst for the OER. In particular, the overpotential (η) for the OER was 420 mV, significantly lower than the η = 780 mV associated with birnessite in the absence of Co. Furthermore, the Tafel slope for Co/birnessite was 81 mV/dec, in comparison to a Tafel slope of greater than 200 mV/dec for birnessite. For chemical water oxidation catalysis, an 8-fold turnover number (TON) was achieved (h = 70 mmol of O2/mol of metal). Density functional theory (DFT) calculations predict that cobalt modification of birnessite resulted in a raising of the valence band edge and occupation of that edge by holes with enhanced mobility during catalysis. Inclusion of extra cobalt beyond the ideal 1:2 ratio was detrimental to catalysis due to disruption of the layered structure of the birnessite phase.

3.
Angew Chem Int Ed Engl ; 55(49): 15254-15257, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27862746

ABSTRACT

The preparation and characterization of the cocrystalline solid-organic sodium ion electrolyte NaClO4 (DMF)3 (DMF=dimethylformamide) is described. The crystal structure of NaClO4 (DMF)3 reveals parallel channels of Na+ and ClO4- ions. Pressed pellets of microcrystalline NaClO4 (DMF)3 exhibit a conductivity of 3×10-4  S cm-1 at room temperature with a low activation barrier to conduction of 25 kJ mol-1 . SEM revealed thin liquid interfacial contacts between crystalline grains, which promote conductivity. The material melts gradually between 55-65 °C, but does not decompose, and upon cooling, it resolidifies as solid NaClO4 (DMF)3 , permitting melt casting of the electrolyte into thin films and the fabrication of cells in the liquid state and ensuring penetration of the electrolyte between the electrode active particles.

4.
ACS Appl Mater Interfaces ; 9(39): 33749-33757, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28929732

ABSTRACT

A high-performance, self-standing solid-state supercapacitor is prepared by incorporating an ionic liquid (IL)-rich ionogel made with 95 wt % IL (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and 5 wt % methyl cellulose, a polymer matrix, into highly interconnected 3-D activated carbon nanofiber (CNF) electrodes. The ionogel exhibits strong mechanical properties with a storage modulus of 5 MPa and a high ionic conductivity of 5.7 mS cm-1 at 25 °C. The high-surface-area CNF-based electrode (2282 m2 g-1), obtained via an electrospinning technique, exhibits hierarchical porosity generated both in situ during pyrolysis and ex situ via KOH activation. The porous architecture of the CNF electrodes facilitates the facile percolation of the soft but mechanically durable ionogel film, thereby enabling intimate contact between porous nanofibers and the gel electrolyte interface. The supercapacitor demonstrates promising capacitive characteristics, including a gravimetric capacitance of 153 F g-1, a high specific energy density of 65 W h kg-1, and high cycling stability, with a capacitance fade of only 4% after 20 000 charge-discharge cycles at 1 A g-1. Moreover, device-level areal capacitances for the gel IL cell of 122 and 151 mF cm-2 are observed at electrode mass loadings of 3.20 and 5.10 mg cm-2, respectively.

5.
ACS Appl Mater Interfaces ; 8(21): 13426-36, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27153318

ABSTRACT

Strong, solid polymer electrolyte ion gels, with moduli in the MPa range, a capacitance of 2 µF/cm(2), and high ambient ionic conductivities (>1 × 10(-3) S/cm), all at room temperature, have been prepared from butyl-N-methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide (PYR14TFSI) and methyl cellulose (MC). These properties are particularly attractive for supercapacitor applications. The ion gels are prepared by codissolution of PYR14TFSI and MC in N,N-dimethylformamide (DMF), which after heating and subsequent cooling form a gel. Evaporation of DMF leave thin, flexible, self-standing ion gels with up to 97 wt % PYR14TFSI, which have the highest combined moduli and ionic conductivity of ion gels to date, with an excellent electrochemical stability window (5.6 V). These favorable properties are attributed to the immiscibility of PYR14TFSI in MC, which permits the ionic conductivity to be independent of the MC at low MC content, and the in situ formation of a volume spanning network of semicrystalline MC nanofibers, which have a high glass transition temperature (Tg = 190 °C) and remain crystalline until they degrade at 300 °C.

6.
Carbohydr Polym ; 136: 19-29, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26572324

ABSTRACT

Blends of methyl cellulose (MC) and liquid pegylated polyoctahedralsilsesquioxane (POSS-PEG) were prepared from non-gelled, aqueous solutions at room temperature (RT), which was below their gel temperatures (Tm). Lamellar, fibrillated films (pure MC) and increasingly micro-porous morphologies with increasing POSS-PEG content were formed, which had RT moduli between 1 and 5GPa. Evidence of distinct micro-phase separated MC and POSS-PEG domains was indicated by the persistence of the MC and POSS-PEG (at 77K) crystal structures in the X-ray diffraction data, and scanning transmission electron images. Mixing of MC and POSS-PEG in the interface region was indicated by suppression of crystallinity in the POSS-PEG, and increases/decreases in the glass transition temperatures (Tg) of POSS-PEG/MC in the blends compared with the pure components. These interface interactions may serve as cross-link sites between the micro-phase separated domains that permit incorporation of high amounts of POSS-PEG in the blends, prevent macro-phase separation and result in rubbery material properties (at high POSS-PEG content). Above Tg/Tm of POSS-PEG, the moduli of the blends increase with MC content as expected. However, below Tg/Tm of POSS-PEG, the moduli are greater for blends with high POSS-PEG content, suggesting that it behaves like semi-crystalline polyethylene oxide reinforced with silica (SiO1.5).


Subject(s)
Methylcellulose/chemistry , Organosilicon Compounds/chemistry , Polyethylene Glycols/chemistry , Mechanical Phenomena , Transition Temperature
7.
Acta Crystallogr C Struct Chem ; 70(Pt 10): 971-4, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25279598

ABSTRACT

Solvent-free single crystals of 1,3,5,7,9,11,13,15-octaphenylpentacyclo[9.5.1.1(3,9).1(5,15).1(7,13)]octasiloxane (abbreviated as octaphenyl-POSS), C48H40O12Si8, were obtained by dehydration/condensation of the tetrol Si4O4(Ph)4(OH)4. The powder pattern generated from the single-crystal data matches well with the experimentally measured powder pattern of commercial octaphenyl-POSS. The geometry of the centrosymmetric molecule in the crystal was compared with that in the gas phase, and had shorter Si-O bond lengths and a broader range of Si-O-Si bond angles. The average Si-O bond length [1.621 (3) Å], and Si-O-Si and O-Si-O bond angles [149 (5) and 109 (1)°, respectively] were within the same range measured previously for octaphenyl-POSS solvates.

SELECTION OF CITATIONS
SEARCH DETAIL