Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Allergy ; 79(4): 843-860, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38055191

ABSTRACT

Transcription therapy is an emerging approach that centers on identifying the factors associated with the malfunctioning gene transcription machinery that causes diseases and controlling them with designer agents. Until now, the primary research focus in therapeutic gene modulation has been on small-molecule drugs that target epigenetic enzymes and critical signaling pathways. However, nucleic acid-based small molecules have gained popularity in recent years for their amenability to be pre-designed and realize operative control over the dynamic transcription machinery that governs how the immune system responds to diseases. Pyrrole-imidazole polyamides (PIPs) are well-established DNA-based small-molecule gene regulators that overcome the limitations of their conventional counterparts owing to their sequence-targeted specificity, versatile regulatory efficiency, and biocompatibility. Here, we emphasize the rational design of PIPs, their functional mechanisms, and their potential as targeted transcription therapeutics for disease treatment by regulating the immune response. Furthermore, we also discuss the challenges and foresight of this approach in personalized immunotherapy in precision medicine.


Subject(s)
Nucleic Acids , Humans , DNA , Immunity
2.
Nutr Cancer ; 75(9): 1710-1742, 2023.
Article in English | MEDLINE | ID: mdl-37572059

ABSTRACT

Colorectal cancer (CRC) accounts for considerable mortalities worldwide. Several modifiable risk factors, including a high intake of certain foods and beverages can cause CRC. This review summarized the latest findings on the intake of various foods, nutrients, ingredients, and beverages on CRC development, with the objective of classifying them as a risk or protective factor. High-risk food items include red meat, processed meat, eggs, high alcohol consumption, sugar-sweetened beverages, and chocolate candy. Food items that are protective include milk, cheese and other dairy products, fruits, vegetables (particularly cruciferous), whole grains, legumes (particularly soy beans), fish, tea (particularly green tea), coffee (particularly among Asians), chocolate, and moderate alcohol consumption (particularly wine). High-risk nutrients/ingredients include dietary fat from animal sources and industrial trans-fatty acids (semisolid/solid hydrogenated oils), synthetic food coloring, monosodium glutamate, titanium dioxide, and high-fructose corn sirup. Nutrients/ingredients that are protective include dietary fiber (particularly from cereals), fatty acids (medium-chain and odd-chain saturated fatty acids and highly unsaturated fatty acids, including omega-3 polyunsaturated fatty acids), calcium, polyphenols, curcumin, selenium, zinc, magnesium, and vitamins A, C, D, E, and B (particularly B6, B9, and B2). A combination of micronutrients and multi-vitamins also appears to be beneficial in reducing recurrent adenoma incidence.


Subject(s)
Colorectal Neoplasms , Diet , Animals , Diet/adverse effects , Vegetables , Vitamins , Colorectal Neoplasms/etiology , Colorectal Neoplasms/prevention & control , Colorectal Neoplasms/epidemiology , Eating
3.
Int J Mol Sci ; 22(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668213

ABSTRACT

Biodegradable periodic mesoporous organosilica (BPMO) has recently emerged as a promising type of mesoporous silica-based nanoparticle for biomedical applications. Like mesoporous silica nanoparticles (MSN), BPMO possesses a large surface area where various compounds can be attached. In this work, we attached boronophenylalanine (10BPA) to the surface and explored the potential of this nanomaterial for delivering boron-10 for use in boron neutron capture therapy (BNCT). This cancer therapy is based on the principle that the exposure of boron-10 to thermal neutron results in the release of a-particles that kill cancer cells. To attach 10BPA, the surface of BPMO was modified with diol groups which facilitated the efficient binding of 10BPA, yielding 10BPA-loaded BPMO (10BPA-BPMO). Surface modification with phosphonate was also carried out to increase the dispersibility of the nanoparticles. To investigate this nanomaterial's potential for BNCT, we first used human cancer cells and found that 10BPA-BPMO nanoparticles were efficiently taken up into the cancer cells and were localized in perinuclear regions. We then used a chicken egg tumor model, a versatile and convenient tumor model used to characterize nanomaterials. After observing significant tumor accumulation, 10BPA-BPMO injected chicken eggs were evaluated by irradiating with neutron beams. Dramatic inhibition of the tumor growth was observed. These results suggest the potential of 10BPA-BPMO as a novel boron agent for BNCT.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Boron Compounds/chemistry , Metal Nanoparticles/administration & dosage , Neoplasms/drug therapy , Organosilicon Compounds/chemistry , Phenylalanine/chemistry , Apoptosis , Cell Proliferation , Humans , Metal Nanoparticles/chemistry , Neoplasms/pathology , Tumor Cells, Cultured
4.
Mol Pharm ; 16(2): 669-681, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30601011

ABSTRACT

In this present study on understanding the taxol (PTX) binding interaction mechanism in both the ß-tubulin and bovine serum albumin (BSA) molecule, various optical spectroscopy and computational techniques were used. The fluorescence steady-state emission spectroscopy result suggests that there is a static quenching mechanism of the PTX drug in both ß-tubulin and BSA, and further time-resolved emission spectroscopy studies confirm that the quenching mechanism exists. The excitation-emission matrix (EEM), Fourier transform infrared, and resonance light scattering spectra (FT-IR) confirm that there are structural changes in both the BSA and ß-tubulin molecule during the binding process of PTX. The molecular docking studies revealed the PTX binding information in BSA, ß-tubulin, and modeled ß-tubulin and the best binding pose to further subject the molecular dynamics simulation, and this study confirms the stability of PTX in the protein complex during the simulation. Density functional theory (DFT) calculations were performed between the free PTX drug and PTX drug (single point) in the protein molecule active site region to understand the internal stability.


Subject(s)
Paclitaxel/chemistry , Paclitaxel/metabolism , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Tubulin/chemistry , Tubulin/metabolism , Animals , Hydrogen Bonding , Molecular Docking Simulation , Protein Binding , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Thermodynamics
5.
J Chem Inf Model ; 59(1): 326-338, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30481010

ABSTRACT

The present study focuses on the determination of the biologically significant N-acetylneuraminic acid (NANA) drug binding interaction mechanism between bovine serum albumin (BSA) and human α-1 acid glycoprotein (HAG) using various optical spectroscopy and computational methods. The steady state fluorescence spectroscopy result suggests that the fluorescence intensity of BSA and HAG was quenched by NANA in a static mode of quenching. Further time-resolved emission spectroscopy measurements confirm that mode of quenching mechanism of NANA in the BSA and HAG system. The FT-IR, excitation-emission matrix and circular dichroism (CD) analysis confirms the presence of NANA in the HAG, BSA system, and fluorescence resonance energy transfer analysis shows that NANA transfers energy between the HAG and BSA system. The molecular docking result shows good binding affinity in both protein complexes, and further molecular dynamics simulations and charge distribution analysis were performed to gain more insight into the binding interaction mechanism of NANA in the HAG and BSA complex.


Subject(s)
Molecular Docking Simulation , N-Acetylneuraminic Acid/metabolism , Orosomucoid/metabolism , Serum Albumin, Bovine/metabolism , Animals , Cattle , Density Functional Theory , Humans , Orosomucoid/chemistry , Protein Binding , Protein Conformation , Serum Albumin, Bovine/chemistry , Static Electricity
6.
Luminescence ; 34(5): 472-479, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30809921

ABSTRACT

Phospholipid quantum dot micelles are useful for bio-applications because of their amphiphilicity and exceptional biocompatibilities. We investigated the uptake of phospholipid [polyethylene glycol (PEG), biotin, and folic acid terminated] modified CdSe/ZnS quantum dot micelles by cancer cells and its photostability under ultrviolet light in the C spectrum (UV-C) (254 nm) or UV-A (365 nm) light irradiation. The stability of micelles to the exposure of UV-C and UV-A light was assessed. Biotin-modified quantum dot micelles give photoluminescence enhancement under UV-C light irradiation. Folate modified micelle under UV-C and UV-A results show considerable photoluminescence enhancement. Photoluminescence lifetime measurements showed 7.04, 8.11 and 11.42 ns for PEG, folate, and biotin terminated phospholipid micelles, respectively. Folate and biotin-modified quantum dot micelles showed excellent uptake by HeLa cells under fluorescence confocal microscopy. Phospholipid CdSe/ZnS quantum dot micelles can be potentially used for diagnosis and treatment of cancer in the future.


Subject(s)
Quantum Dots/chemistry , Biological Transport/radiation effects , HeLa Cells , Humans , Micelles , Microscopy, Confocal , Phospholipids/metabolism , Quantum Dots/metabolism , Ultraviolet Rays
7.
Sci Technol Adv Mater ; 20(1): 337-355, 2019.
Article in English | MEDLINE | ID: mdl-31068983

ABSTRACT

Luminescence probe has been broadly used for bio-imaging applications. Among them, near-infrared (NIR) quantum dots (QDs) are more attractive due to minimal tissue absorbance and larger penetration depth. Above said reasons allowed whole animal imaging without slice scan or dissection. This review describes in vitro and in vivo imaging of NIR QDs in the regions of 650-900 nm (NIR-I) and 1000-1450 nm (NIR-II). Also, we summarize the recent progress in bio-imaging and discuss the future trends of NIR QDs including group II-VI, IV-VI, I-VI, I-III-VI, III-V, and IV semiconductors.

8.
Luminescence ; 33(4): 731-741, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29578306

ABSTRACT

In this study the interaction mechanism between newly synthesized 4-(3-acetyl-5-(acetylamino)-2-methyl-2, 3-dihydro-1,3,4-thiadiazole-2-yl) phenyl benzoate (thiadiazole derivative) anticancer active drug with calf thymus DNA was investigated by using various optical spectroscopy techniques along with computational technique. The absorption spectrum shows a clear shift in the lower wavelength region, which may be due to strong hypochromic effect in the ctDNA and the drug. The results of steady state fluorescence spectroscopy show that there is static quenching occurring while increasing the thiadiazole drug concentration in the ethidium bromide-ctDNA system. Also the binding constant (K), thermo dynamical parameters of enthalpy change (ΔH°), entropy change (ΔS°) Gibbs free energy change (ΔG°) were calculated at different temperature (293 K, 298 K) and the results are in good agreement with theoretically calculated MMGBSA binding analysis. Time resolved emission spectroscopy analysis clearly explains the thiadiazole derivative competitive intercalation in the ethidium bromide-ctDNA system. Further, molecular docking studies was carried out to understand the hydrogen bonding and hydrophobic interaction between ctDNA and thiadiazole derivative molecule. In addition the docking and molecular dynamics charge distribution analysis was done to understand the internal stability of thiadiazole derivative drug binding sites of ctDNA. The global reactivity of thiadiazole derivative such as electronegativity, electrophilicity and chemical hardness has been calculated.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoates/pharmacology , DNA/chemistry , Thiadiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoates/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Quantum Theory , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thiadiazoles/chemistry , Tumor Cells, Cultured
9.
Sci Technol Adv Mater ; 18(1): 43-50, 2017.
Article in English | MEDLINE | ID: mdl-28179957

ABSTRACT

Detection of disease-related gene expression by DNA hybridization is a useful diagnostic method. In this study a monolayer graphene field effect transistor (GFET) was fabricated for the detection of a particular single-stranded DNA (target DNA). The probe DNA, which is a single-stranded DNA with a complementary nucleotide sequence, was directly immobilized onto the graphene surface without any linker. The VDirac was shifted to the negative direction in the probe DNA immobilization. A further shift of VDirac in the negative direction was observed when the target DNA was applied to GFET, but no shift was observed upon the application of non-complementary mismatched DNA. Direct immobilization of double-stranded DNA onto the graphene surface also shifted the VDirac in the negative direction to the same extent as that of the shift induced by the immobilization of probe DNA and following target DNA application. These results suggest that the further shift of VDirac after application of the target DNA to the GFET was caused by the hybridization between the probe DNA and target DNA.

10.
J Biochem Mol Toxicol ; 29(8): 373-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25906763

ABSTRACT

A newly synthesized 1, 4-bis ((4-((4-heptylpiperazin-1-yl) methyl)-1H-1, 2, 3-triazol-1-yl) methyl) benzene from the family of piperazine derivative has good anticancer activity, antibacterial and low toxic nature; its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of piperazine derivative to bovine serum albumin (BSA) was investigated using fluorescence spectroscopy. The molecular distance r between the donor (BSA) and acceptor (piperazine derivative) was estimated according to Forster's theory of nonradiative energy transfer. The physicochemical properties of piperazine derivative, which induced structural changes in BSA, have been studied by circular dichroism and those chemical environmental changes were probed using Raman spectroscopic analysis. Further, the binding dynamics was expounded by synchronous fluorescence spectroscopy and molecular modeling studies explored the hydrophobic interaction and hydrogen bonding results, which stabilize the interaction.


Subject(s)
Piperazines/chemistry , Serum Albumin, Bovine/chemistry , Triazoles/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Protein Binding , Spectrum Analysis
11.
Sci Rep ; 14(1): 9618, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671084

ABSTRACT

Toll-like receptor 9 (TLR-9) is a protein that helps our immune system identify specific DNA types. Upon detection, CpG oligodeoxynucleotides signal the immune system to generate cytokines, essential proteins that contribute to the body's defence against infectious diseases. Native phosphodiester type B CpG ODNs induce only Interleukin-6 with no effect on interferon-α. We prepared silicon quantum dots containing different surface charges, such as positive, negative, and neutral, using amine, acrylate-modified Plouronic F-127, and Plouronic F-127. Then, class B CpG ODNs are loaded on the surface of the prepared SiQDs. The uptake of ODNs varies based on the surface charge; positively charged SiQDs demonstrate higher adsorption compared to SiQDs with negative and neutral surface charges. The level of cytokine production in peripheral blood mononuclear cells was found to be associated with the surface charge of SiQDs prior to the binding of the CpG ODNs. Significantly higher levels of IL-6 and IFN-α induction were observed compared to neutral and negatively charged SiQDs loaded with CpG ODNs. This observation strongly supports the notion that the surface charge of SiQDs effectively regulates cytokine induction.


Subject(s)
Cytokines , Quantum Dots , Silicon , Quantum Dots/chemistry , Silicon/chemistry , Humans , Cytokines/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Oligodeoxyribonucleotides/chemistry , Interleukin-6/metabolism , Surface Properties , Interferon-alpha/metabolism , Interferon-alpha/chemistry , Toll-Like Receptor 9/metabolism
12.
Front Bioeng Biotechnol ; 12: 1397804, 2024.
Article in English | MEDLINE | ID: mdl-38938982

ABSTRACT

Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.

13.
J Biomol Struct Dyn ; 42(3): 1455-1468, 2024.
Article in English | MEDLINE | ID: mdl-37114656

ABSTRACT

Viral infections cause significant health problems all over the world, and it is critical to develop treatments for these problems. Antivirals that target viral genome-encoded proteins frequently cause the virus to become more resistant to treatment. Because viruses rely on several cellular proteins and phosphorylation processes that are essential to their life cycle, drugs targeting host-based targets could be a viable treatment option. To reduce costs and improve efficiency, existing kinase inhibitors could be repurposed as antiviral medications; however, this method rarely works, and specific biophysical approaches are required in the field. Because of the widespread use of FDA-approved kinase inhibitors, it is now possible to better understand how host kinases contribute to viral infection. The purpose of this article is to investigate the tyrphostin AG879 (Tyrosine kinase inhibitor) binding information in Bovine Serum Albumin (BSA), human ErbB2 (HER2), C-RAF1 Kinase (c-RAF), SARS-CoV-2 main protease (COVID 19), and Angiotensin-converting enzyme 2 (ACE-2).Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Humans , Tyrphostins , SARS-CoV-2 , Serum Albumin, Bovine , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Protease Inhibitors
14.
Sci Rep ; 14(1): 12665, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830927

ABSTRACT

Quantum dots, which won the Nobel Prize in Chemistry, have recently gained significant attention in precision medicine due to their unique properties, such as size-tunable emission, high photostability, efficient light absorption, and vibrant luminescence. Consequently, there is a growing demand to identify new types of quantum dots from various sources and explore their potential applications as stimuli-responsive biosensors, biomolecular imaging probes, and targeted drug delivery agents. Biomass-waste-derived carbon quantum dots (CQDs) are an attractive alternative to conventional QDs, which often require expensive and toxic precursors, as they offer several merits in eco-friendly synthesis, preparation from renewable sources, and cost-effective production. In this study, we evaluated three CQDs derived from biomass waste for their potential application as non-toxic bioimaging agents in various cell lines, including human dermal fibroblasts, HeLa, cardiomyocytes, induced pluripotent stem cells, and an in-vivo medaka fish (Oryzias latipes) model. Confocal microscopic studies revealed that CQDs could assist in visualizing inflammatory processes in the cells, as they were taken up more by cells treated with tumor necrosis factor-α than untreated cells. In addition, our quantitative real-time PCR gene expression analysis has revealed that citric acid-based CQDs can potentially reduce inflammatory markers such as Interleukin-6. Our studies suggest that CQDs have potential as theragnostic agents, which can simultaneously identify and modulate inflammatory markers and may lead to targeted therapy for immune system-associated diseases.


Subject(s)
Biomass , Carbon , Fluorescent Dyes , Inflammation , Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Humans , Animals , Fluorescent Dyes/chemistry , HeLa Cells , Inflammation/metabolism , Oryzias , Tumor Necrosis Factor-alpha/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects
15.
RSC Adv ; 14(4): 2835-2849, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38234869

ABSTRACT

Chalcone derivatives are an extremely valuable class of compounds, primarily due to the keto-ethylenic group, CO-CH[double bond, length as m-dash]CH-, they contain. Moreover, the presence of a reactive α,ß-unsaturated carbonyl group confers upon them a broad range of pharmacological properties. Recent developments in heterocyclic chemistry have led to the synthesis of chalcone derivatives, which have been biologically investigated for their activity against certain diseases. In this study, we investigated the binding of new chalcone derivatives with COX-2 (cyclooxygenase-2) and HSA (Human Serum Albumin) using spectroscopic and molecular modeling studies. COX-2 is commonly found in cancer and plays a role in the production of prostaglandin E (2), which can help tumors grow by binding to receptors. HSA is the most abundant protein in blood plasma, and it transports various compounds, including hormones and fatty acids. The conformation of chalcone derivatives in the HSA complex system was established through fluorescence steady and excited state spectroscopy techniques and FTIR analyses. To gain a more comprehensive understanding, molecular docking, and dynamics were conducted on the target protein (COX-2) and transport protein (HSA). In addition, we conducted density-functional theory (DFT) and single-point DFT to understand intermolecular interaction in protein active sites.

16.
Sci Technol Adv Mater ; 14(1): 015005, 2013 Feb.
Article in English | MEDLINE | ID: mdl-27877563

ABSTRACT

Silica nanotubes have been extensively applied in the biomedical field. However, very little attention has been paid to the fabrication and application of micropatterned silica nanotubes. In the present study, microgrooved silica nanotube membranes were fabricated in situ by microgrooving silica-coated collagen hybrid fibril hydrogels in a Teflon microfluidic chip followed by calcination for removal of collagen fibrils. Scanning electron microscopy images showed that the resulting silica nanotube membranes displayed a typical microgroove/ridge surface topography with ∼50 µm microgroove width and ∼120 µm ridge width. They supported adsorption of bone morphogenetic protein 2 (BMP-2) and exhibited a sustained release behavior for BMP-2. After culturing with osteoblast MC3T3-E1 cells, they induced an enhanced osteoblast differentiation due to the release of biologically active BMP-2 and a strong contact guidance ability to directly align and elongate osteoblasts due to the presence of microgrooved surface topography, indicating their potential application as a multi-functional cell-supporting matrix for tissue generation.

17.
RSC Adv ; 13(9): 6051-6064, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36814879

ABSTRACT

In recent years, the field of nanomaterials has exponentially expanded with versatile biological applications. However, one of the roadblocks to their clinical translation is the critical knowledge gap about how the nanomaterials interact with the biological microenvironment (nano-bio interactions). When nanomaterials are used as drug carriers or contrast agents for biological imaging, the nano-bio interaction-mediated protein conformational changes and misfolding could lead to disease-related molecular alterations and/or cell death. Here, we studied the conformation changes of human immunoglobulin G (IgG) upon interaction with silicon quantum dots functionalized with 1-decene, Pluronic-F127 (SiQD-De/F127 micelles) using UV-visible, fluorescence steady state and excited state kinetics, circular dichroism, and molecular modeling. Decene monolayer terminated SiQDs are accumulated inside the Pluronic F127 shells to form SiQD-De/F127 micelles and were shown to bind strongly with IgG. In addition, biological evaluation studies in cell lines (HeLa, Fibroblast) and medaka fish (eggs and larvae) showed enhanced uptake and minimal cytotoxicity. Our results substantiate that engineered QDs obviating the protein conformational changes could have adept bioefficacy.

18.
J Biomol Struct Dyn ; 41(23): 14599-14619, 2023.
Article in English | MEDLINE | ID: mdl-36914255

ABSTRACT

Heterocyclic derivatives have more interesting biological properties which hold a remarkable place in pharmaceutical industries due to their unique physiochemical properties and ease of adaption in various biological environments. Of many, the above-said derivatives have been recently examined for their promising action against a few malignancies. Specifically, anti-cancer research has benefited from these derivatives' natural flexibility and dynamic core scaffold. In any case, concerning some other promising anti-cancer drugs, heterocyclic derivative doesn't come without deficiencies. To be a successful drug candidate it should poses Absorption, Distribution, Metabolism and Eliminations (ADME) parameter, and must also have good binding interaction towards carrier protein as well as DNA and less in toxic nature, economically feasible. In this review, we described the overview of biologically important heterocyclic derivatives and their main application in medicine. Further, we focus types of biophysical techniques to understand the binding interaction mechanism.Communicated by Ramaswamy H. Sarma.


Subject(s)
Heterocyclic Compounds , Biophysics , Heterocyclic Compounds/pharmacology , Molecular Docking Simulation
19.
RSC Adv ; 13(40): 28230-28249, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37753403

ABSTRACT

Over recent years, carbon quantum dots (CQDs) have advanced significantly and gained substantial attention for their numerous benefits. These benefits include their simple preparation, cost-effectiveness, small size, biocompatibility, bright luminescence, and low cytotoxicity. As a result, they hold great potential for various fields, including bioimaging. A fascinating aspect of synthesizing CQDs is that it can be accomplished by using biomass waste as the precursor. Furthermore, the synthesis approach allows for control over the physicochemical characteristics. This paper unequivocally examines the production of CQDs from biomass waste and their indispensable application in bioimaging. The synthesis process involves a simple one-pot hydrothermal method that utilizes biomass waste as a carbon source, eliminating the need for expensive and toxic reagents. The resulting CQDs exhibit tunable fluorescence and excellent biocompatibility, making them suitable for bioimaging applications. The successful application of biomass-derived CQDs has been demonstrated through biological evaluation studies in various cell lines, including HeLa, Cardiomyocyte, and iPS, as well as in medaka fish eggs and larvae. Using biomass waste as a precursor for CQDs synthesis provides an environmentally friendly and sustainable alternative to traditional methods. The resulting CQDs have potential applications in various fields, including bioimaging.

20.
J Nanosci Nanotechnol ; 21(6): 3299-3305, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34739785

ABSTRACT

A compact sensory platform has been fabricated using a graphene field effect transistor (GFET) to identify the biomolecules by pH sensing. The monolayer GFET is driven by an in-built top-gate for detecting the pH of the contacting buffer solution. The GFET device detects the effect of hydroxide ions on a graphite surface. Electrical characteristics of the device were measured after desiccating the buffer solution on the surface of the monolayer graphene. Electrically, the VDirac point shifted toward the positive direction when the pH value of the buffer solution is varied. The transfer curve of the device also moved in the positive direction with increasing pH values, indicating charge transfer from dopant molecules to the surface of graphene. The sensitivity of the device was estimated to be ~48.5 mV/pH. The fabrication of the compact GFET device with an in-built gate provides a platform for effective pH sensing with a user-friendly interface for biosensing applications.


Subject(s)
Biosensing Techniques , Graphite , Hydrogen-Ion Concentration , Transistors, Electronic
SELECTION OF CITATIONS
SEARCH DETAIL