Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 352
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 109-115, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38015533

ABSTRACT

Macrophages become activated by a variety of stimuli such as lipopolysaccharide (LPS) and participate in the process of immune responses. Activated macrophages produce various inflammatory mediators. In the present study, we investigated the anti-inflammatory mechanism of a serotonin derivative, N-feruloylserotonin, isolated from safflower seeds in RAW 264.7 macrophages. N-Feruloylserotonin treatment significantly attenuated these effects on LPS-induced reactive oxygen species, nitric oxide, and prostaglandin E2 production in RAW 264.7 macrophages. Furthermore, N-feruloylserotonin significantly decreased the abnormal expression of mitogen-activated protein kinase, such as phosphor (p)-c-Jun N-terminal kinase and p-extracellular-signal regulated kinase activation. Further research revealed that N-feruloylserotonin could stimulate sirtuin1 (SIRT1), then promote the forkhead box protein O1 (FOXO1), and suppress nuclear factor-kappa B (NF-kB) signaling pathways. The present study suggests that N-feruloylserotonin may be a new anti-inflammatory component and a promising candidate for anti-inflammatory therapeutic agents through the regulation of SIRT1-stimulated FOXO1 and NF-kB signaling pathways.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Mice , Lipopolysaccharides/toxicity , Serotonin/pharmacology , Sirtuin 1 , RAW 264.7 Cells , Inflammation/chemically induced , Inflammation/drug therapy , Signal Transduction , Anti-Inflammatory Agents/pharmacology
2.
J Integr Neurosci ; 22(1): 10, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36722239

ABSTRACT

BACKGROUND: Cholecystokinin (CCK) is one of the most abundant peptides in the central nervous system and is believed to function as a neurotransmitter as well as a gut hormone with an inverse correlation of its level to anxiety and depression. Therefore, CCK receptors (CCKRs) could be a relevant target for novel antidepressant therapy. METHODS: In silico target prediction was first employed to predict the probability of the bromophenols interacting with key protein targets based on a model trained on known bioactivity data and chemical similarity considerations. Next, we tested the functional effect of natural bromophenols from Symphyocladia latiuscula on the CCK2 receptor followed by a molecular docking simulation to predict interactions between a compound and the binding site of the target protein. RESULTS: Results of cell-based functional G-protein coupled receptor (GPCR) assays demonstrate that bromophenols 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl) ether (3) are full CCK2 antagonists. Molecular docking simulation of 1‒3 with CCK2 demonstrated strong binding by means of interaction with prime interacting residues: Arg356, Asn353, Val349, His376, Phe227, and Pro210. Simulation results predicted good binding scores and interactions with prime residues, such as the reference antagonist YM022. CONCLUSIONS: The results of this study suggest bromophenols 1-3 are CCK2R antagonists that could be novel therapeutic agents for CCK2R-related diseases, especially anxiety and depression.


Subject(s)
Anxiety , Receptor, Cholecystokinin B , Molecular Docking Simulation , Anxiety/drug therapy , Central Nervous System , Computer Simulation
3.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958841

ABSTRACT

Natural flavone and isoflavone analogs such as 3',4',7-trihydroxyflavone (1), 3',4',7-trihydroxyisoflavone (2), and calycosin (3) possess significant neuroprotective activity in Alzheimer's and Parkinson's disease. This study highlights the in vitro human monoamine oxidase (hMAO) inhibitory potential and functional effect of those natural flavonoids at dopamine and serotonin receptors for their possible role in neuroprotection. In vitro hMAO inhibition and enzyme kinetics studies were performed using a chemiluminescent assay. The functional effect of three natural flavonoids on dopamine and serotonin receptors was tested via cell-based functional assays followed by a molecular docking simulation to predict interactions between a compound and the binding site of the target protein. A forced swimming test was performed in the male C57BL/6 mouse model. Results of in vitro chemiluminescent assays and enzyme kinetics depicted 1 as a competitive inhibitor of hMAO-A with promising potency (IC50 value: 7.57 ± 0.14 µM) and 3 as a competitive inhibitor of hMAO-B with an IC50 value of 7.19 ± 0.32 µM. Likewise, GPCR functional assays in transfected cells showed 1 as a good hD4R antagonist. In docking analysis, these active flavonoids interacted with a determinant-interacting residue via hydrophilic and hydrophobic interactions, with low docking scores comparable to reference ligands. The post-oral administration of 1 to male C57BL/6 mice did not reduce the immobility time in the forced swimming test. The results of this study suggest that 1 and 3 may serve as effective regulators of the aminergic system via hMAO inhibition and the hD4R antagonist effect, respectively, for neuroprotection. The route of administration should be considered.


Subject(s)
Dopamine , Flavonoids , Mice , Animals , Humans , Male , Flavonoids/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Molecular Docking Simulation , Neuroprotection , Mice, Inbred C57BL , Monoamine Oxidase/metabolism , Receptors, Serotonin , Structure-Activity Relationship , Molecular Structure
4.
Molecules ; 28(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37959720

ABSTRACT

Icariin, a major bioactive compound found in the Epimedium genus, has been reported to exert protective effects against neurodegenerative disorders. In the current study, we aimed to investigate the regulatory effect of icariin and its active metabolites (icariside II and icaritin) against prime G-protein-coupled receptor targets, considering their association with neuronal disorders. Icariside II exhibited selective agonist activity towards the dopamine D3 receptor (D3R), with half-maximal effective concentrations of 13.29 µM. Additionally, they effectively inhibited the specific binding of radioligands to D3R. Molecular docking analysis revealed that icariside II potentially exerts its agonistic effect through hydrogen-bonding interaction with Asp110 of the D3R, accompanied by negative binding energy. Conversely, icaritin demonstrated selective antagonist effects on the muscarinic acetylcholine M2 receptor (M2R). Radioligand binding assay and molecular docking analysis identified icaritin as an orthosteric ligand for M2R. Furthermore, all three compounds, icariin and its two metabolites, successfully mitigated MK-801-induced schizophrenia-like symptoms, including deficits in prepulse inhibition and social interaction, in mice. In summary, these findings highlight the potential of icariin and its metabolites as promising lead structures for the discovery of new drugs targeting cognitive and neurodegenerative disorders.


Subject(s)
Neurodegenerative Diseases , Schizophrenia , Mice , Animals , Dizocilpine Maleate , Molecular Docking Simulation , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Flavonoids/pharmacology , Flavonoids/metabolism
5.
Molecules ; 27(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080485

ABSTRACT

Over the years, great attention has been paid to coumarin derivatives, a set of versatile molecules that exhibit a wide variety of biological activities and have few toxic side effects. In this study, we investigated the antidiabetic potential of 6-formyl umbelliferone (6-FU), a novel furanocoumarin isolated from Angelica decursiva. Numerous pharmacological activities of 6-FU have been previously reported; however, the mechanism of its antidiabetic activity is unknown. Therefore, we examined the action of 6-FU on a few candidate-signaling molecules that may underlie its antidiabetic activity, including its inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation (IC50 = 1.13 ± 0.12, 58.36 ± 1.02, 5.11 ± 0.21, and 2.15 ± 0.13 µM, respectively). A kinetic study showed that 6-FU exhibited mixed-type inhibition against α-glucosidase and HRAR and competitive inhibition of PTP1B. Docking simulations of 6-FU demonstrated negative binding energies and close proximity to residues in the binding pockets of those enzymes. We also investigated the molecular mechanisms underlying 6-FU's antidiabetic effects. 6-FU significantly increased glucose uptake and decreased PTP1B expression in insulin-resistant C2C12 skeletal muscle cells. Moreover, 6-FU (0.8-100 µM) remarkably inhibited the formation of fluorescent AGEs in glucose-fructose-induced human serum albumin glycation over the course of 4 weeks. The findings clearly indicate that 6-FU will be useful in the development of multiple target-oriented therapeutic modalities for the treatment of diabetes and diabetes-related complications.


Subject(s)
Angelica , Diabetes Mellitus , Furocoumarins , Angelica/chemistry , Diabetes Mellitus/drug therapy , Humans , Hypoglycemic Agents/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Umbelliferones/pharmacology , Umbelliferones/therapeutic use , alpha-Glucosidases/metabolism
6.
Behav Pharmacol ; 32(4): 308-320, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33491993

ABSTRACT

Alterations of monoamine transmission in mesocorticolimbic regions have been suggested in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). The habenula is an important brain area in regulation of monoamine transmission. In this study, we investigated behavioral and electrophysiological alterations induced by neonatal habenula lesion (NHL) in rats. In NHL rats, age-dependent behavioral alterations relevant to the ADHD symptoms, such as hyperlocomotion, impulsivity, and attention deficit, were observed. Local field potentials (LFPs) in mesocorticolimbic regions of anesthetized rats were examined with in vivo electrophysiological recordings. Abnormally enhanced synchronization of slow (delta) and fast (gamma) LFP oscillations between the amygdala (AMY) and prefrontal cortex (PFC) was found in juvenile, but not in adult, NHL rats. We further examined the effects of an extract and the active compound from the perennial large brown algae Ecklonia stolonifera (ES), which have previously been demonstrated to modulate monoamine transmission, on these NHL-induced alterations. One week of ES extract treatments normalized the NHL-induced behavioral alterations, whereas the active compound fucosterol improved attention deficit and impulsivity, but not hyperlocomotion, in NHL rats. Consistent with the behavioral effects, ES extract treatments also normalized augmented AMY-PFC coupling. These results suggest that altered limbic-cortical information processing may be involved in ADHD-like behavioral alterations induced by NHL, which could be ameliorated by the natural substance, such as ES that affects monoamine transmission.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Attention/drug effects , Biogenic Monoamines/metabolism , Electrophysiological Phenomena/drug effects , Habenula , Impulsive Behavior , Stigmasterol/analogs & derivatives , Synaptic Transmission/drug effects , Animals , Animals, Newborn , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/metabolism , Attention Deficit Disorder with Hyperactivity/physiopathology , Disease Models, Animal , Habenula/metabolism , Habenula/physiopathology , Impulsive Behavior/drug effects , Impulsive Behavior/physiology , Phaeophyceae , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Rats , Stigmasterol/pharmacology
7.
Biol Pharm Bull ; 44(3): 298-304, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33361652

ABSTRACT

The white-flowered leaves of Eclipta prostrata L. together with leaves of Scoparia dulcis and Cynodon dactylon are mixedly boiled in water and given to diabetic patients resulting in the significant improvement in the management of diabetes. However, the active constituents from this plant for antidiabetic and anti-obesity properties are remaining unclear. Thus, this study was to discover anti-diabetes and anti-obesity activities through protein tyrosine phosphatases (PTP)1B inhibitory effects. We found that the fatty acids (23, 24) showed potent PTP1B inhibition with IC50 values of 2.14 and 3.21 µM, respectively. Triterpenoid-glycosides (12-15) also exhibited strong to moderate PTP1B inhibitory effects, with IC50 values ranging from 10.88 to 53.35 µM. Additionally, active compounds were investigated for their PTP1B inhibitory mechanism and docking analysis. On the other hand, the anti-inflammatory activity from our study revealed that compounds (1-4, 7, 8, 10) displayed the significant inhibition nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Especially, compound 9 showed the potent inhibitory effects in LPS-induced NO production on RAW264.7 cell. Therefore, further Western blot analysis was performed to identify the inhibitory expression including heme oxygenase-1 (HO-1) and inhibitor of kappaB (IκB) phosphorylation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anti-Obesity Agents/pharmacology , Eclipta , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/chemistry , Anti-Obesity Agents/chemistry , Cell Survival/drug effects , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/metabolism , Hypoglycemic Agents/chemistry , I-kappa B Proteins/antagonists & inhibitors , I-kappa B Proteins/metabolism , Lipopolysaccharides/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mice , Nitric Oxide/metabolism , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Leaves , RAW 264.7 Cells
8.
Mar Drugs ; 19(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199834

ABSTRACT

Phlorotannins are polyphenolic compounds in marine alga, especially the brown algae. Among numerous phlorotannins, dieckol and phlorofucofuroeckol-A (PFF-A) are the major ones and despite a wider biological activity profile, knowledge of the G protein-coupled receptor (GPCR) targets of these phlorotannins is lacking. This study explores prime GPCR targets of the two phlorotannins. In silico proteocheminformatics modeling predicted twenty major protein targets and in vitro functional assays showed a good agonist effect at the α2C adrenergic receptor (α2CAR) and an antagonist effect at the adenosine 2A receptor (A2AR), δ-opioid receptor (δ-OPR), glucagon-like peptide-1 receptor (GLP-1R), and 5-hydroxytryptamine 1A receptor (5-TH1AR) of both phlorotannins. Besides, dieckol showed an antagonist effect at the vasopressin 1A receptor (V1AR) and PFF-A showed a promising agonist effect at the cannabinoid 1 receptor and an antagonist effect at V1AR. In silico molecular docking simulation enabled us to investigate and identify distinct binding features of these phlorotannins to the target proteins. The docking results suggested that dieckol and PFF-A bind to the crystal structures of the proteins with good affinity involving key interacting amino acid residues comparable to reference ligands. Overall, the present study suggests α2CAR, A2AR, δ-OPR, GLP-1R, 5-TH1AR, CB1R, and V1AR as prime receptor targets of dieckol and PFF-A.


Subject(s)
Benzofurans/chemistry , Dioxins/chemistry , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , CHO Cells , Cell Line , Computer Simulation , Cricetulus , HeLa Cells , Humans , Mice , Molecular Docking Simulation , Phaeophyceae/chemistry , Rats
9.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805177

ABSTRACT

Traditional Chinese medicines (TCMs) have been a rich source of novel drug discovery, and Cassia seed is one of the common TCMs with numerous biological effects. Based on the existing reports on neuroprotection by Cassia seed extract, the present study aims to search possible pharmacological targets behind the neuroprotective effects of the Cassia seeds by evaluating the functional effect of specific Cassia compounds on various G-protein-coupled receptors. Among the four test compounds (cassiaside, rubrofusarin gentiobioside, aurantio-obtusin, and 2-hydroxyemodin 1-methylether), only aurantio-obtusin demonstrated a specific V1AR antagonist effect (71.80 ± 6.0% inhibition at 100 µM) and yielded an IC50 value of 67.70 ± 2.41 µM. A molecular docking study predicted an additional interaction of the hydroxyl group at C6 and a methoxy group at C7 of aurantio-obtusin with the Ser341 residue as functional for the observed antagonist effect. In the transient brain ischemia/reperfusion injury C57BL/6 mice model, aurantio-obtusin attenuated the latency time that was reduced in the bilateral common carotid artery occlusion (BCCAO) groups. Likewise, compared to neuronal damage in the BCCAO groups, treatment with aurantio-obtusin (10 mg/kg, p.o.) significantly reduced the severity of damage in medial cornu ammonis 1 (mCA1), dorsal CA1, and cortex regions. Overall, the findings of this study highlight V1AR as a possible target of aurantio-obtusin for neuroprotection.


Subject(s)
Anthraquinones/pharmacology , Antidiuretic Hormone Receptor Antagonists/chemistry , Neuroprotective Agents/pharmacology , Prosencephalon/pathology , Receptors, Vasopressin/chemistry , Animals , Anthraquinones/chemistry , Carotid Stenosis/metabolism , Cassia/chemistry , Chromones/chemistry , Emodin/analogs & derivatives , Emodin/chemistry , Ether/chemistry , Glucosides/chemistry , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Prosencephalon/metabolism , Seeds/chemistry
10.
Molecules ; 26(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34946519

ABSTRACT

In the present study, we investigated the structure-activity relationship of naturally occurring hesperetin derivatives, as well as the effects of their glycosylation on the inhibition of diabetes-related enzyme systems, protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase. Among the tested hesperetin derivatives, hesperetin 5-O-glucoside, a single-glucose-containing flavanone glycoside, significantly inhibited PTP1B with an IC50 value of 37.14 ± 0.07 µM. Hesperetin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50 = 9.65 ± 0.01 µM). The most active flavanone hesperetin 5-O-glucoside suggested that the position of a sugar moiety at the C-5-position influences the PTP1B inhibition. It was observed that the ability to inhibit PTP1B is dependent on the nature, position, and number of sugar moieties in the flavonoid structure, as well as conjugation. In the kinetic study of PTP1B enzyme inhibition, hesperetin 5-O-glucoside led to mixed-type inhibition. Molecular docking studies revealed that hesperetin 5-O-glucoside had a higher binding affinity with key amino residues, suggesting that this molecule best fits the PTP1B allosteric site cavity. The data reported here support hesperetin 5-O-glucoside as a hit for the design of more potent and selective inhibitors against PTP1B in the search for a new anti-diabetic treatment.


Subject(s)
Enzyme Inhibitors/chemistry , Hesperidin/analogs & derivatives , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Hesperidin/chemistry , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 30(8): 127049, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32111435

ABSTRACT

One achiral tetra-aryl cyclobutane [rheundulin A (1)] and three stilbene glycosides [rheundulins B-D (2-4)] were isolated from the methanol extract of Rheum undulatum L., along with eight known compounds (5-12). Structural determination of the new compounds (1-4) was accomplished using comprehensive spectroscopic methods. Compound 1 represents the first example of a dimeric stilbene linked via a cyclobutane ring from the Rheum genus. All isolates were screened for their inhibition against α-glucosidase. Among them, stilbene derivatives (5 and 6) showed strong inhibitory effects on α-glucosidase with IC50 values of 0.5 and 15.4 µM, respectively, which were significantly higher than that of the positive control, acarbose (IC50 = 126.8 µM). Rheundulin A (1) showed moderate α-glucosidase inhibition with an IC50 value of 80.1 µM. In addition, kinetic analysis and molecular docking simulation of the most active compound (5) with α-glucosidase were performed for the first time. Kinetic studies revealed that compound 5 competitively inhibited the active site of α-glucosidase (Ki = 0.40 µM), while 6 had a mixed-type inhibitory effect against α-glucosidase (Ki = 15.34 µM). Molecular docking simulations of 5 and 6 demonstrated negative-binding energies, indicating high proximity to the active site and tight binding to α-glucosidase enzyme.


Subject(s)
Cyclobutanes/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Plant Extracts/pharmacology , Rheum/chemistry , Rhizome/chemistry , Stilbenes/pharmacology , alpha-Glucosidases/metabolism , Cyclobutanes/chemistry , Cyclobutanes/isolation & purification , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Humans , Kinetics , Molecular Docking Simulation , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Stilbenes/chemistry , Stilbenes/isolation & purification , Structure-Activity Relationship
12.
J Nat Prod ; 83(2): 323-332, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31944695

ABSTRACT

Seven new stilbene glycosides including three dimers (1-3) and four monomers (4-7) were isolated from the roots of Polygonum multiflorum along with nine previously identified stilbenes (8-16). In addition, two deglucosylated stilbenes, 2a and 3a, were also obtained as new dimeric stilbenes. The structures of the purified phytochemicals were elucidated by interpreting their spectroscopic data (NMR, HRMS, and ECD). To the best of our knowledge, this represents the first isolation of a phenylpropanoid (C6-C3) substituted with a stilbene unit (7) from the Polygonaceae family. In an in vitro enzyme assay with human recombinant protein tyrosine phosphatase-1B (PTP1B), compounds 2-5 showed weak PTP1B inhibition with an IC50 value range of 27.4-37.6 µM, while three deglucosylated stilbenes 2a, 3a, and 8a exhibited IC50 values of 2.1, 1.9, and 12.1 µM, respectively. The inhibition modes and binding mechanism of selected inhibitors (2a and 3a) were investigated using kinetic methods and molecular docking simulations.


Subject(s)
Enzyme Inhibitors/chemistry , Fallopia multiflora/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Stilbenes/chemistry , Enzyme Inhibitors/isolation & purification , Glycosides/chemistry , Humans , Molecular Docking Simulation , Phytochemicals , Plant Roots/chemistry , Polygonaceae/chemistry , Polygonum/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Stilbenes/isolation & purification
13.
Bioorg Chem ; 92: 103293, 2019 11.
Article in English | MEDLINE | ID: mdl-31557622

ABSTRACT

Umbelliferone has been demonstrated to have a wide range of biological activities. However, the effect of incorporating a formyl moiety in the umbelliferone scaffold has not been investigated. In this paper, we investigated the inhibitory activity of six coumarins, namely umbelliferone (1), 6-formyl umbelliferone (2), 8-formyl umbelliferone (3), umbelliferone-6-carboxylic acid (4), esculetin (5), and scopoletin (6) against human monoamine oxidases (hMAOs), self-amyloid ß (Aß) aggregation, and lipid peroxidation. We found that all compounds had high selectivity for hMAO-A in comparison with hMAO-B. Among the compounds, 2 exhibited the highest hMAO inhibitory activity with an IC50 value of 3.23 µM for hMAO-A and 15.31 µM for hMAO-B. Enzyme kinetic analysis showed that 2 and 3 were competitive hMAO inhibitors. In silico hydrated molecular docking simulations revealed that the coumarins interacted with substrate-binding site residues of the enzymes and the isoalloxazine ring of FAD. In addition, formyl coumarins 2 and 3 significantly inhibited lipid peroxidation in rat brain homogenates and self-Aß25-35 aggregation compared to other derivatives. These represent the first experimental and modelling data for hMAO-A/B inhibition by umbelliferone derivatives. Together, the data suggest that introduction of a formyl moiety in the 7-hydroxycoumarin scaffold, especially at the 6 position, plays an important role in the inhibition of hMAOs, Aß self-aggregation, and lipid peroxidation. Umbelliferone derivative 2 is a promising therapeutic lead scaffold for developing anti-neuropsychiatric disorder drugs that function via selective hMAO-A inhibition.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Lipid Peroxidation/drug effects , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Neuroprotective Agents/pharmacology , Umbelliferones/pharmacology , Amyloid beta-Peptides/metabolism , Angelica/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/isolation & purification , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Protein Aggregates/drug effects , Structure-Activity Relationship , Umbelliferones/chemistry , Umbelliferones/isolation & purification
14.
Mar Drugs ; 17(11)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652867

ABSTRACT

Both amyloid-ß (Aß) and insulin are amyloidogenic peptides, and they play a critical role in Alzheimer's disease (AD) and type-2 diabetes (T2D). Misfolded or aggregated Aß and glycated insulin are commonly found in AD and T2D patients, respectively, and exhibit neurotoxicity and oxidative stress. The present study examined the anti-Aß25-35 aggregation and anti-insulin glycation activities of five phlorotannins isolated from Ecklonia stolonifera. Thioflavin-T assay results suggest that eckol, dioxinodehydroeckol, dieckol, and phlorofucofuroeckol-A (PFFA) significantly inhibit Aß25-35 self-assembly. Molecular docking and dynamic simulation analyses confirmed that these phlorotannins have a strong potential to interact with Aß25-35 peptides and interrupt their self-assembly and conformational transformation, thereby inhibiting Aß25-35 aggregation. In addition, PFFA dose-dependently inhibited d-ribose and d-glucose induced non-enzymatic insulin glycation. To understand the molecular mechanism for insulin glycation and its inhibition, we predicted the binding site of PFFA in insulin via computational analysis. Interestingly, PFFA strongly interacted with the Phe1 in insulin chain-B, and this interaction could block d-glucose access to the glycation site of insulin. Taken together, our novel findings suggest that phlorofucofuroeckol-A could be a new scaffold for AD treatment by inhibiting the formation of ß-sheet rich structures in Aß25-35 and advanced glycation end-products (AGEs) in insulin.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Benzofurans/chemistry , Benzofurans/pharmacokinetics , Dioxins/chemistry , Dioxins/pharmacokinetics , Glycation End Products, Advanced/antagonists & inhibitors , Benzofurans/pharmacology , Dioxins/pharmacology , Lipid Peroxidation/drug effects , Molecular Docking Simulation , Molecular Structure , Phaeophyceae/chemistry , Phloroglucinol/chemistry , Phloroglucinol/pharmacology , Protein Aggregation, Pathological
15.
Mar Drugs ; 17(3)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30875760

ABSTRACT

The marine alga, Symphyocladia latiuscula (Harvey) Yamada, is a good source of bromophenols with numerous biological activities. This study aims to characterize the anti-diabetic potential of 2,3,6-tribromo-4,5-dihydroxybenzyl derivatives isolated from S. latiuscula via their inhibition of tyrosine phosphatase 1B (PTP1B) and α-glucosidase. Additionally, this study uses in silico modeling and glucose uptake potential analysis in insulin-resistant (IR) HepG2 cells to reveal the mechanism of anti-diabetic activity. This bioassay-guided isolation led to the discovery of three potent bromophenols that act against PTP1B and α-glucosidase: 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether) (3). All compounds inhibited the target enzymes by 50% at concentrations below 10 µM. The activity of 1 and 2 was comparable to ursolic acid (IC50; 8.66 ± 0.82 µM); however, 3 was more potent (IC50; 5.29 ± 0.08 µM) against PTP1B. Interestingly, the activity of 1⁻3 against α-glucosidase was 30⁻110 times higher than acarbose (IC50; 212.66 ± 0.35 µM). Again, 3 was the most potent α-glucosidase inhibitor (IC50; 1.92 ± 0.02 µM). Similarly, 1⁻3 showed concentration-dependent glucose uptake in insulin-resistant HepG2 cells and downregulated PTP1B expression. Enzyme kinetics revealed different modes of inhibition. In silico molecular docking simulations demonstrated the importance of the 7⁻OH group for H-bond formation and bromine/phenyl ring number for halogen-bond interactions. These results suggest that bromophenols from S. latiuscula, especially highly brominated 3, are inhibitors of PTP1B and α-glucosidase, enhance insulin sensitivity and glucose uptake, and may represent a novel class of anti-diabetic drugs.


Subject(s)
Benzyl Compounds/pharmacology , Diabetes Mellitus/drug therapy , Ethers/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Rhodophyta/chemistry , alpha-Glucosidases/metabolism , Benzyl Compounds/chemistry , Benzyl Compounds/isolation & purification , Cell Survival/drug effects , Down-Regulation/drug effects , Ethers/isolation & purification , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Hep G2 Cells , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Insulin Resistance , Molecular Docking Simulation
16.
Mar Drugs ; 17(2)2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30744179

ABSTRACT

The G protein-coupled receptor (GPCR) family of proteins comprises signaling proteins that mediate cellular responses to various hormones and neurotransmitters, and serves as a prime target for drug discovery. Towards our goal of discovering secondary metabolites from natural sources that can function as neuronal drugs, we evaluated the modulatory effect of eckol on various GPCRs via cell-based functional assays. In addition, we conducted in silico predictions to obtain molecular insights into the functional effects of eckol. Functional assays revealed that eckol had a concentration-dependent agonist effect on dopamine D3 and D4 receptors. The half maximal effective concentration (EC50) of eckol for the dopamine D3 and D4 receptors was 48.62 ± 3.21 and 42.55 ± 2.54 µM, respectively, while the EC50 values of dopamine as a reference agonist for these two receptors were 2.9 and 3.3 nM, respectively. In silico studies revealed that a low binding energy in addition to hydrophilic, hydrophobic, π⁻alkyl, and π⁻π T-shaped interactions are potential mechanisms by which eckol binds to the dopamine receptors to exert its agonist effects. Molecular dynamics (MD) simulation revealed that Phe346 of the dopamine receptors is important for binding of eckol, similar to eticlopride and dopamine. Our results collectively suggest that eckol is a potential D3/D4 agonist for the management of neurodegenerative diseases, such as Parkinson's disease.


Subject(s)
Dioxins/chemistry , Dioxins/pharmacology , Receptors, Dopamine D3/agonists , Receptors, Dopamine D4/agonists , Animals , Cell Line , Cricetinae , Dopamine , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Rats , Receptors, Dopamine D3/metabolism , Receptors, Dopamine D4/metabolism , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism
17.
Mar Drugs ; 17(6)2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31216636

ABSTRACT

The marine biosphere is a treasure trove of natural bioactive secondary metabolites and the richest source of structurally diverse and unique compounds, such as phlorotannins and halo-compounds, with high therapeutic potential. Eckol is a precursor compound representing the dibenzo-1,4-dioxin class of phlorotannins abundant in the Ecklonia species, which are marine brown algae having a ubiquitous distribution. In search of compounds having biological activity from macro algae during the past three decades, this particular compound has attracted massive attention for its multiple therapeutic properties and health benefits. Although several varieties of marine algae, seaweed, and phlorotannins have already been well scrutinized, eckol deserves a place of its own because of the therapeutic properties it possesses. The relevant information about this particular compound has not yet been collected in one place; therefore, this review focuses on its biological applications, including its potential health benefits and possible applications to restrain diseases leading to good health. The facts compiled in this review could contribute to novel insights into the functions of eckol and potentially enable its use in different uninvestigated fields.


Subject(s)
Dioxins/pharmacology , Dioxins/therapeutic use , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biological Factors/pharmacology , Biological Factors/therapeutic use , Humans , Phaeophyceae/chemistry , Seaweed/chemistry
18.
Mar Drugs ; 17(5)2019 May 17.
Article in English | MEDLINE | ID: mdl-31108882

ABSTRACT

A marine red alga, Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae), is a rich source of bromophenols with a wide array of biological activities. This study investigates the anti-tyrosinase activity of the alga. Moderate activity was demonstrated by the methanol extract of S. latiuscula, and subsequent column chromatography identified three bromophenols: 2,3,6-tribromo-4,5-dihydroxybenzyl methyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether) (3). Bromophenols 1 and 3 exhibited potent competitive tyrosinase inhibitory activity against l-tyrosine substrates, with IC50 values of 10.78 ± 0.19 and 2.92 ± 0.04 µM, respectively. Against substrate l-3,4-dihydroxyphenylalanine (l-DOPA), compounds 1 and 3 demonstrated moderate activity, while 2 showed no observable effect. The experimental data were verified by a molecular docking study that found catalytic hydrogen and halogen interactions were responsible for the activity. In addition, compounds 1 and 3 exhibited dose-dependent inhibitory effects in melanin and intracellular tyrosinase levels in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. Compounds 3 and 1 were the most effective tyrosinase inhibitors. In addition, increasing the bromine group number increased the mushroom tyrosinase inhibitory activity.


Subject(s)
Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Rhodophyta/chemistry , Tyrosine/antagonists & inhibitors , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Inhibitory Concentration 50 , Methanol/chemistry , Molecular Docking Simulation
19.
Mar Drugs ; 17(5)2019 May 22.
Article in English | MEDLINE | ID: mdl-31121891

ABSTRACT

Hizikia fusiformis (Harvey) Okamura is an edible marine alga that has been widely used in Korea, China, and Japan as a rich source of dietary fiber and essential minerals. In our previous study, we observed that the methanol extract of H. fusiformis and its non-polar fractions showed potent protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase inhibition. Therefore, the aim of the present study was to identify the active ingredient in the methanol extract of H. fusiformis. We isolated a new glycerol fatty acid (13) and 20 known compounds including 9 fatty acids (1-3, 7-12), mixture of 24R and 24S-saringosterol (4), fucosterol (5), mixture of 24R,28R and 24S,28R-epoxy-24-ethylcholesterol (6), cedrusin (14), 1-(4-hydroxy-3-methoxyphenyl)-2-[2-hydroxy -4-(3-hydroxypropyl)phenoxy]-1,3-propanediol (15), benzyl alcohol alloside (16), madhusic acid A (17), glycyrrhizin (18), glycyrrhizin-6'-methyl ester (19), apo-9'-fucoxanthinone (20) and tyramine (21) from the non-polar fraction of H. fusiformis. New glycerol fatty acid 13 was identified as 2-(7'- (2″-hydroxy-3″-((5Z,8Z,11Z)-icosatrienoyloxy)propoxy)-7'-oxoheptanoyl)oxymethylpropenoic acid by spectroscopic analysis using NMR, IR, and HR-ESI-MS. We investigated the effect of the 21 isolated compounds and metabolites (22 and 23) of 18 against the inhibition of PTP1B and α-glucosidase enzymes. All fatty acids showed potent PTP1B inhibition at low concentrations. In particular, new compound 13 and fucosterol epoxide (6) showed noncompetitive inhibitory activity against PTP1B. Metabolites of glycyrrhizin, 22 and 23, exhibited competitive inhibition against PTP1B. These findings suggest that H. fusiformis, a widely consumed seafood, may be effective as a dietary supplement for the management of diabetes through the inhibition of PTP1B.


Subject(s)
Plant Extracts/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Sargassum/chemistry , alpha-Glucosidases/metabolism , Dietary Supplements , Enzyme Activation/drug effects , Fatty Acids/chemistry , Fatty Acids/isolation & purification , Fatty Acids/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Methanol/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification
20.
Mar Drugs ; 17(6)2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31238535

ABSTRACT

Modulation of multiple protein targets with a single compound is essential for the effective treatment of central nervous system disorders. In our previous G protein-coupled receptor (GPCR) cell-based study, a selective human monoamine oxidase (hMAO)-A inhibitor, eckol, stimulated activity of dopamine D3 and D4 receptors. This result led to our interest in marine phlorotannin-mediated modulation of hMAO enzymes and related GPCRs in neuronal disorders. Here, we evaluate the multi-target effects of phloroglucinol, phlorofucofuroeckol-A (PFF-A), and dieckol by screening their modulatory activity against hMAO-A and -B and various neuronal GPCRs. Among the tested phlorotannins, PFF-A showed the strongest inhibitory activity against both hMAO isoforms, with higher selectivity toward hMAO-B than hMAO-A. Enzyme kinetics and docking data revealed that PFF-A noncompetitively acts on hMAOs into the alternative binding pocket of enzymes with allosteric functions. In a functional assay for GPCR screening, dieckol and PFF-A exhibited a multi-target combination of D3R/D4R agonism and D1/5HT1A/NK1 antagonism. In particular, they effectively stimulated D3R and D4R, compared to other GPCRs. Docking analysis confirmed that dieckol and PFF-A successfully docked into the conserved active sites of D3R and D4R and interacted with aspartyl and serine residues in the orthosteric binding pockets of the respective receptors. Based on our experimental and computational data, we established the structure-activity relationship between tested phlorotannins and target proteins, including hMAOs and GPCRs. Our current findings suggest that hMAO inhibitors dieckol and PFF-A, major phlorotannins of edible brown algae with multi-action on GPCRs, are potential agents for treatment of psychological disorders and Parkinson's disease.


Subject(s)
Dopamine Antagonists/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Nervous System Diseases/drug therapy , Receptors, Dopamine/metabolism , Tannins/pharmacology , Benzofurans/pharmacology , Dioxins/pharmacology , Dopamine/metabolism , Humans , Molecular Docking Simulation/methods , Nervous System Diseases/metabolism , Phaeophyceae/chemistry , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL