Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Ind Microbiol Biotechnol ; 48(3-4)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33928363

ABSTRACT

Streptomyces species are soil-dwelling bacteria that produce vast numbers of pharmaceutically valuable secondary metabolites (SMs), such as antibiotics, immunosuppressants, antiviral, and anticancer drugs. On the other hand, the biosynthesis of most SMs remains very low due to tightly controlled regulatory networks. Both global and pathway-specific regulators are involved in the regulation of a specific SM biosynthesis in various Streptomyces species. Over the past few decades, many of these regulators have been identified and new ones are still being discovered. Among them, a global regulator of SM biosynthesis named WblA was identified in several Streptomyces species. The identification and understanding of the WblAs have greatly contributed to increasing the productivity of several Streptomyces SMs. This review summarizes the characteristics and applications on WblAs reported to date, which were found in various Streptomyces species and other actinobacteria.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/metabolism , Streptomyces/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Streptomyces/genetics
2.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34227672

ABSTRACT

Shikimate is a key intermediate in high demand for synthesizing valuable antiviral drugs, such as the anti-influenza drug and oseltamivir (Tamiflu®). Microbial-based shikimate production strategies have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. Although shikimate biosynthesis has been reported in several engineered bacterial species, the shikimate production yield is still unsatisfactory. This study designed an Escherichia coli cell factory and optimized the fed-batch culture process to achieve a high titer of shikimate production. Using the previously constructed dehydroshikimate (DHS)-overproducing E. coli strain, two genes (aroK and aroL) responsible for converting shikimate to the next step were disrupted to facilitate shikimate accumulation. The genes with negative effects on shikimate biosynthesis, including tyrR, ptsG, and pykA, were disrupted. In contrast, several shikimate biosynthetic pathway genes, including aroB, aroD, aroF, aroG, and aroE, were overexpressed to maximize the glucose uptake and intermediate flux. The shiA involved in shikimate transport was disrupted, and the tktA involved in the accumulation of both PEP and E4P was overexpressed. The rationally designed shikimate-overproducing E. coli strain grown in an optimized medium produced approximately 101 g/l of shikimate in 7-l fed-batch fermentation, which is the highest level of shikimate production reported thus far. Overall, rational cell factory design and culture process optimization for microbial-based shikimate production will play a key role in complementing traditional plant-derived shikimate production processes.


Subject(s)
Artificial Cells , Escherichia coli , Biosynthetic Pathways , Escherichia coli/genetics , Metabolic Engineering , Shikimic Acid
3.
J Ind Microbiol Biotechnol ; 46(5): 649-655, 2019 May.
Article in English | MEDLINE | ID: mdl-30798437

ABSTRACT

Pseudonocardia autotrophica was previously identified to produce a toxicity-reduced and solubility-improved disaccharide-containing anti-fungal compound belonging to the tetraene-family, Nystatin-like Pseudonocardia Polyene A1 (NPP A1). Subsequently NPP B1, a novel derivative harboring a heptaene core structure, was produced by a pathway-engineered Pseudonocardia strain through inactivation of the specific enoly reductase gene domain in the NPP biosynthetic gene cluster. Although in vitro and in vivo efficacy and toxicity studies indicate that NPP B1 is a promising lead antifungal compound, further improvement is required to increase the extremely low production yield in the pathway-engineered strain. To overcome this challenge, we performed the N-methyl-N'-nitro-N-nitrosoguanidine (NTG) iterative random mutagenesis, followed by zone-of-inhibition agar plug assay. After three rounds of the mutagenesis-and-screening protocol, the production yield of NPP B1 increased to 6.25 mg/L, which is more than an eightfold increase compared to the parental strain. The qRT-PCR analysis revealed that transcripts of the NPP B1 biosynthetic genes were increased in the mutant strain. Interestingly, an endogenous 125-kb plasmid was found to be eliminated through this mutagenesis. To further improve the NPP B1 production yield, the 32-kb NPP-specific regulatory gene cluster was cloned and overexpressed in the mutant strain. The chromosomal integration of the extra copy of the six NPP-specific regulatory genes led to an additional increase of NPP B1 yield to 31.6 mg/L, which is the highest production level of NPP B1 ever achieved by P. autotrophica strains. These results suggest that a synergistic combination of both the traditional and genetic strain improvement approaches is a very efficient strategy to stimulate the production of an extremely low-level metabolite (such as NPP B1) in a pathway-engineered rare actinomycetes strain.


Subject(s)
Actinobacteria/metabolism , Nystatin/biosynthesis , Polyenes/metabolism , Actinobacteria/genetics , Actinomycetales/genetics , Antifungal Agents/chemistry , Disaccharides/metabolism , Genes, Regulator , Industrial Microbiology , Multigene Family , Mutagenesis , Plasmids/metabolism , Protein Engineering , Sugars
4.
Biochem Biophys Res Commun ; 499(2): 279-284, 2018 05 05.
Article in English | MEDLINE | ID: mdl-29571737

ABSTRACT

Cis,cis-muconic acid (CCM) is a biochemical material that can be used for the production of various plastics and polymers and is particularly gaining attention as an adipic acid precursor for the synthesis of nylon-6,6. In the current study, the production of CCM was first attempted by introducing a newly developed protocatechuate (PCA) decarboxylase from Corynebacterium glutamicum 13032 to inha103, which completed the biosynthetic pathway therein. To improve CCM productivity, a phosphoenol pyruvate (PEP)-dependent phosphotransferase system (PTS) that consumed the existing glucose was developed, in the form of a strain with a non-PTS that did not consume PEP. To improve glucose uptake, we developed P25 strain, in which iolR (a transcriptional regulator gene) was additionally deleted. Strain P28, a P25 derivative expressing PCA decarboxylase, produced 4.01 g/L of CCM, which was 14% more than that produced by the parental strain. Moreover, strains P29 and P30, with an active pentose phosphate pathway and overexpressing important genes (qsuB) in the metabolic pathway, produced 4.36 and 4.5 g/L of CCM, respectively. Particularly, the yield per glucose in strain P30 was similar to that of the fed-batch culture of Escherichia coli, which has the highest reported yield of 22% (mol/mol). These results are underpinned by the characteristics of the non-PTS with increased PEP availability and a strain with deletion of the iolR gene, which greatly increased glucose uptake.


Subject(s)
Corynebacterium glutamicum/enzymology , Phosphotransferases/metabolism , Sorbic Acid/analogs & derivatives , Bacterial Proteins/metabolism , Bioengineering , Carbon/metabolism , Gene Knockout Techniques , Glucose/metabolism , Hydroxybenzoates/metabolism , Membrane Transport Proteins/metabolism , Sorbic Acid/chemistry , Sorbic Acid/metabolism
5.
Microb Cell Fact ; 16(1): 96, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28569150

ABSTRACT

BACKGROUND: Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. RESULTS: To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem clusters of pikromycin biosynthetic gene clusters. CONCLUSIONS: The 60 kb pikromycin biosynthetic gene cluster was isolated in a single integration pSBAC vector. Introduction of the pikromycin biosynthetic gene cluster into the pikromycin non-producing strains resulted in higher pikromycin production. The utility of the pSBAC system as a precise cloning tool for large-sized biosynthetic gene clusters was verified through heterologous expression of the pikromycin biosynthetic gene cluster. Moreover, this pSBAC-driven heterologous expression strategy was confirmed to be an ideal approach for production of low and inconsistent natural products such as pikromycin in S. venezuelae, implying that this strategy could be employed for development of a custom overexpression scheme of natural product biosynthetic gene clusters in actinomycetes.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Macrolides/metabolism , Multigene Family/genetics , Streptomyces/genetics , Cloning, Molecular , Streptomyces/metabolism
6.
Appl Microbiol Biotechnol ; 101(12): 5131-5137, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28488115

ABSTRACT

Polyene macrolides such as nystatin A1 and amphotericin B have been known to be potent antifungal antibiotics for several decades. Because the therapeutic application of polyenes is restricted by severe side effects such as nephrotoxicity, various chemical and biological studies to modify the polyene structure have been conducted to develop less-toxic polyene antifungals. A newly discovered nystatin-like polyene compound NPP was shown to contain an aglycone that was identical to nystatin but harbored a unique di-sugar moiety, mycosaminyl-N-acetyl-glucosamine, which led to higher solubility and reduced hemolytic toxicity. Additionally, a NPP-specific second sugar extending gene, nppY, was recently identified to be responsible for the transfer of a second sugar, N-acetyl-glucosamine, in NPP biosynthesis. In this study, we investigated biosynthesis of the glycoengineered NPP analog through genetic manipulation of the NPP A1 producer, Pseudonocardia autotrophica KCTC9441. NypY is another second sugar glycosyltransferase produced by Pseudonocardia sp. P1 that is responsible for the transfer of a mannose to the mycosaminyl sugar residue of nystatin. We blocked the transfer of a second sugar through nppY disruption, then expressed nypY in P. autotrophica △nppY mutant strain. When compared with nystain A1 and NPP A1, the newly engineered mannosylated NPP analog showed reduced in vitro antifungal activity, while exhibiting higher nephrotoxical activities against human hepatocytes. These results suggest for the first time that not only the number of sugar residues but also the type of extended second sugar moiety could affect biological activities of polyene macrolides.


Subject(s)
Actinomycetales/metabolism , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Disaccharides/metabolism , Polyenes/chemistry , Amphotericin B/chemistry , Anti-Bacterial Agents/metabolism , Biosynthetic Pathways , Glycosylation , Glycosyltransferases/metabolism , Metabolic Engineering/methods , Nystatin/chemistry , Polyenes/metabolism
7.
J Ind Microbiol Biotechnol ; 44(4-5): 555-561, 2017 05.
Article in English | MEDLINE | ID: mdl-27734184

ABSTRACT

Tautomycetin (TMC) is a natural product with a linear structure that includes an ester bond connecting a dialkylmaleic moiety to a type I polyketide chain. Although TMC was originally identified as an antifungal antibiotic in the late 1980s, follow-up studies revealed its novel immunosuppressant activity. Specifically, TMC exhibited a mechanistically unique immunosuppressant activity about 100 times higher than that of cyclosporine A, a widely used immunosuppressant drug. Interestingly, a structurally close relative, tautomycin (TTM), was reported to not possess TMC-like immunosuppressant activity, suggesting that a distinctive polyketide moiety of TMC plays a critical role in immunosuppressant activity. Cloning and engineering of a TMC polyketide biosynthetic gene cluster generated several derivatives showing different biological activities. TMC was also found to be biosynthesized as a linear structure without forming a lactone ring, unlike the most polyketide-based compounds, implying the presence of a unique polyketide thioesterase in the cluster. Although TMC biosynthesis was limited due to its tight regulation by two pathway-specific regulatory genes located in the cluster, its production was significantly stimulated through homologous and heterologous expression of its entire biosynthetic gene cluster using a Streptomyces artificial chromosome vector system. In this mini-review, we summarize recent advances in the biosynthesis, regulation, and pathway engineering of a linear polyketide, TMC, in Streptomyces sp. CK4412.


Subject(s)
Gene Expression Regulation, Bacterial , Immunosuppressive Agents/chemistry , Lipids/biosynthesis , Streptomyces/chemistry , Streptomyces/genetics , Antifungal Agents/chemistry , Chromosomes, Artificial, Bacterial/genetics , Furans/chemistry , Genes, Regulator , Lipids/chemistry , Microorganisms, Genetically-Modified , Multigene Family , Polyketides/chemistry , Protein Engineering
8.
J Ind Microbiol Biotechnol ; 44(9): 1293-1299, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28555391

ABSTRACT

NPP A1 produced by Pseudonocardia autotrophica is a unique disaccharide-containing polyene macrolide. NPP A1 was reported to have higher water solubility and lower hemolytic toxicity than nystatin A1 while retaining its antifungal activity. An engineered NPP A1 analogue, NPP A2, was generated by inactivation of the nppL gene, encoding a P450 monooxygenase in P. autotrophica. The resulting compound exhibited the corresponding chemical structure of NPP A1 but lacked a C10 hydroxyl group. In this study, newly developed crystallization recovery methods for NPP A2 purification, followed by an evaluation of in vitro antifungal activity and hemolytic activity, were performed. The crystallization methods were designed to eliminate the undesired viscous impurities encountered during the NPP A2 purification process, resulting in improved purity from 5.3 to 83.5% w/w. NPP A2 isolated from the improved purification process also exhibited two times higher antifungal activity and 1.8 times higher hemolytic toxicity than those of NPP A1. These results suggest that the minor structural modification of disaccharide-containing polyene macrolides, such as removing a C10 hydroxyl group, might require an alternative recovery process, such as crystallization, to confirm its improved biological activity.


Subject(s)
Actinomycetales/metabolism , Polyenes/chemistry , Polyenes/metabolism , Actinomycetales/chemistry , Actinomycetales/genetics , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Disaccharides/metabolism , Hemolysis , Macrolides/chemistry , Macrolides/metabolism , Nystatin/metabolism
9.
J Ind Microbiol Biotechnol ; 43(8): 1189-93, 2016 08.
Article in English | MEDLINE | ID: mdl-27277081

ABSTRACT

Tautomycetin (TMC) is a linear polyketide metabolite produced by Streptomyces sp. CK4412 that has been reported to possess multiple biological functions including T cell-specific immunosuppressive and anticancer activities that occur through a mechanism of differential inhibition of protein phosphatases such as PP1, PP2A, and SHP2. We previously reported the characterization of the entire TMC biosynthetic gene cluster constituted by multifunctional type I polyketide synthase (PKS) assembly and suggested that the linear form of TMC could be generated via free acid chain termination by a narrow TMC thioesterase (TE) pocket. The modular nature of the assembly presents a unique opportunity to alter or interchange the native biosynthetic domains to produce targeted variants of TMC. Herein, we report swapping of the TMC TE domain sequence with the exact counterpart of the macrocyclic polyketide pikromycin (PIK) TE. PIK TE-swapped Streptomyces sp. CK4412 mutant produced not only TMC, but also a cyclized form of TMC, implying that the bioengineering based in vivo custom construct can be exploited to produce engineered macrolactones with new structural functionality.


Subject(s)
Furans/chemistry , Lipids/chemistry , Macrolides/chemistry , Streptomyces/metabolism , Biosynthetic Pathways/genetics , Cell Engineering , Furans/metabolism , Polyketide Synthases/genetics , Streptomyces/genetics , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/metabolism
10.
J Ind Microbiol Biotechnol ; 43(11): 1625-1630, 2016 11.
Article in English | MEDLINE | ID: mdl-27581440

ABSTRACT

A polyene compound NPP identified in Pseudonocardia autotrophica was shown to contain an aglycone identical to nystatin, but to harbor a unique disaccharide moiety that led to higher solubility and reduced hemolytic activity. Recently, it was revealed that the final step of NPP (nystatin-like polyene) biosynthesis is C10 regio-specific hydroxylation by the cytochrome P450 hydroxylase (CYP) NppL (Kim et al. [7]). Through mutation and cross-complementation, here we found that NppL preferred a polyene substrate containing a disaccharide moiety for C10 hydroxylation, while its orthologue NysL involved in nystatin biosynthesis showed no substrate preference toward mono- and disaccharide moieties, suggesting that two homologous polyene CYPs, NppL and NysL might possess a unique domain recognizing a sugar moiety. Two hybrid NppL constructs containing the C-terminal domain of NysL exhibited no substrate preference toward 10-deoxy NPP and 10-deoxy nystatin-like NysL, implying that the C-terminal domain plays a major role in differentiating the sugar moiety responsible for substrate specificity. Further C-terminal domain dissection of NppL revealed that the last fifty amino acids play a critical role in determining substrate specificity of polyene-specific hydroxylation, setting the stage for the biotechnological application of hydroxyl diversification for novel polyene biosynthesis in actinomycetes.


Subject(s)
Actinomycetales/enzymology , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Polyenes/metabolism , Actinomycetales/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Disaccharides/chemistry , Hydroxylation , Nystatin/biosynthesis , Polyenes/chemistry , Protein Domains , Substrate Specificity
11.
Microb Cell Fact ; 14: 140, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26377404

ABSTRACT

BACKGROUND: Direct cloning combined with heterologous expression of a secondary metabolite biosynthetic gene cluster has become a useful strategy for production improvement and pathway modification of potentially valuable natural products present at minute quantities in original isolates of actinomycetes. However, precise cloning and efficient overexpression of an entire biosynthetic gene cluster remains challenging due to the ineffectiveness of current genetic systems in manipulating large-sized gene clusters for heterologous as well as homologous expression. RESULTS: A versatile Escherichia coli-Streptomyces shuttle bacterial artificial chromosomal (BAC) conjugation vector, pSBAC, was used along with a cluster tandem integration approach to carry out homologous and heterologous overexpression of a large 80-kb polyketide biosynthetic pathway gene cluster of tautomycetin (TMC), which is a protein phosphatase PP1/PP2A inhibitor and T cell-specific immunosuppressant. Unique XbaI restriction sites were precisely inserted at both border regions of the TMC biosynthetic gene cluster within the chromosome of TMC-producing Streptomyces sp. CK4412, followed by site-specific recombination of pSBAC into the flanking region of the TMC gene cluster. The entire TMC gene cluster was then rescued as a single giant recombinant pSBAC by XbaI digestion of the chromosomal DNA as well as subsequent self-ligation. Next, the recombinant pSBAC construct containing the entire TMC cluster in E. coli was directly conjugated into model Streptomyces strains, resulting in rapid and enhanced TMC production. Moreover, introduction of the TMC cluster-containing pSBAC into wild-type Streptomyces sp. CK4412 as well as a recombinant S. coelicolor strain resulted in a chromosomal tandem repeat of the entire TMC cluster with 14-fold and 5.4-fold enhanced TMC productivities, respectively. CONCLUSIONS: The 80-kb TMC biosynthetic gene cluster was isolated in a single integration vector, pSBAC. Introduction of TMC biosynthetic gene cluster in TMC non-producing strains has resulted in similar amount of TMC production yield. Moreover, over-expression of TMC biosynthetic gene cluster in original producing strain and recombinant S. coelicolor dramatically increased TMC production. Thus, this strategy can be employed to develop a custom overexpression scheme of entire metabolite pathway clusters present in actinomycetes.


Subject(s)
Chromosomes, Artificial, Bacterial , Cloning, Molecular/methods , Escherichia coli/genetics , Multigene Family , Polyketides/metabolism , Streptomyces/genetics , Genetic Vectors , Metabolic Engineering , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
12.
J Ind Microbiol Biotechnol ; 41(5): 879-86, 2014 May.
Article in English | MEDLINE | ID: mdl-24659179

ABSTRACT

The regio-specific hydroxylation at the 4th N-methyl leucine of the immunosuppressive agent cyclosporin A (CsA) was previously proposed to be mediated by a unique cytochrome P450 hydroxylase (CYP), CYP-sb21 from the rare actinomycetes Sebekia benihana. Interestingly, a different rare actinomycetes species, Pseudonocardia autotrophica, was found to possess a different regio-selectivity, the preferential hydroxylation at the 9th N-methyl leucine of CsA. Through an in silico analysis of the whole genome of P. autotrophica, we describe here the classification of 31 total CYPs in P. autotrophica. Three putative CsA CYP genes, showing the highest sequence homologies with CYPsb21, were successfully inactivated using PCR-targeted gene disruption. Only one knock-out mutant, ΔCYP-pa1, failed to convert CsA to its hydroxylated forms. The hydroxylation activity of CsA by CYP-pa1 was confirmed by CYP-pa1 gene complementation as well as heterologous expression in the CsA non-hydroxylating Streptomyces coelicolor. Moreover, the cyclosporine regio-selectivity of CYP-pa1 expressed in the ΔCYP-sb21 S. benihana mutant strain was also confirmed unchanged through cross complementation. These results show that preferential regio-specific hydroxylation at the 9th N-methyl leucine of CsA is carried out by a specific P450 hydroxylase gene in P. autotrophica, CYP-pa1, setting the stage for the biotechnological application of CsA regioselective hydroxylation.


Subject(s)
Actinomycetales/enzymology , Cyclosporine/metabolism , Cytochrome P-450 Enzyme System/genetics , Immunosuppressive Agents/metabolism , Mixed Function Oxygenases/genetics , Actinomycetales/genetics , Cyclosporine/chemistry , Cytochrome P-450 Enzyme System/metabolism , Genome, Bacterial , Genomics , Hydroxylation , Immunosuppressive Agents/chemistry , Mixed Function Oxygenases/metabolism , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism
13.
Sci Rep ; 14(1): 7757, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565875

ABSTRACT

Soil microorganisms with diverse bioactive compounds such as Streptomyces are appreciated as valuable resources for the discovery of eco-friendly fungicides. This study isolated a novel Streptomyces from soil samples collected in the organic green tea fields in South Korea. The isolation process involved antifungal activity screening around 2400 culture extracts, revealing a strain designated as S. collinus Inha504 with remarkable antifungal activity against diverse phytopathogenic fungi. S. collinus Inha504 not only inhibited seven phytopathogenic fungi including Fusarium oxysporum and Aspergillus niger in bioassays and but also showed a control effect against F. oxysporum infected red pepper, strawberry, and tomato in the in vivo pot test. Genome mining of S. collinus Inha504 revealed the presence of the biosynthetic gene cluster (BGC) in the chromosome encoding a polyene macrolide which is highly homologous to the lucensomycin (LCM), a compound known for effective in crop disease control. Through genetic confirmation and bioassays, the antifungal activity of S. collinus Inha504 was attributed to the presence of LCM BGC in the chromosome. These results could serve as an effective strategy to select novel Streptomyces strains with valuable biological activity through bioassay-based screening and identify biosynthetic gene clusters responsible for the metabolites using genome mining approach.


Subject(s)
Antifungal Agents , Streptomyces , Antifungal Agents/metabolism , Lucensomycin/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Fungi/genetics , Multigene Family , Soil
14.
J Microbiol Biotechnol ; 33(10): 1370-1375, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37463859

ABSTRACT

In this study, we aimed to enhance the accumulation of chorismate (CHR) and anthranilate (ANT), key intermediates in the shikimate pathway, by modifying a shikimate over-producing recombinant strain of Corynebacterium glutamicum [19]. To achieve this, we utilized a CRISPR-driven genome engineering approach to compensate for the deletion of shikimate kinase (AroK) as well as ANT synthases (TrpEG) and ANT phosphoribosyltransferase (TrpD). In addition, we inhibited the CHR metabolic pathway to induce CHR accumulation. Further, to optimize the shikimate pathway, we overexpressed feedback inhibition-resistant Escherichia coli AroG and AroH genes, as well as C. glutamicum AroF and AroB genes. We also overexpressed QsuC and substituted shikimate dehydrogenase (AroE). In parallel, we optimized the carbon metabolism pathway by deleting the gntR family transcriptional regulator (IolR) and overexpressing polyphosphate/ATP-dependent glucokinase (PpgK) and glucose kinase (Glk). Moreover, acetate kinase (Ack) and phosphotransacetylase (Pta) were eliminated. Through our CRISPR-driven genome re-design approach, we successfully generated C. glutamicum cell factories capable of producing up to 0.48 g/l and 0.9 g/l of CHR and ANT in 1.3 ml miniature culture systems, respectively. These findings highlight the efficacy of our rational cell factory design strategy in C. glutamicum, which provides a robust platform technology for developing high-producing strains that synthesize valuable aromatic compounds, particularly those derived from the shikimate pathway metabolites.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Corynebacterium glutamicum , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Glucose/metabolism , Metabolic Networks and Pathways/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering
15.
Front Microbiol ; 14: 1081221, 2023.
Article in English | MEDLINE | ID: mdl-37007513

ABSTRACT

Anthranilate is a key platform chemical in high demand for synthesizing food ingredients, dyes, perfumes, crop protection compounds, pharmaceuticals, and plastics. Microbial-based anthranilate production strategies have been developed to overcome the unstable and expensive supply of anthranilate via chemical synthesis from non-renewable resources. Despite the reports of anthranilate biosynthesis in several engineered cells, the anthranilate production yield is still unsatisfactory. This study designed an Escherichia coli cell factory and optimized the fed-batch culture process to achieve a high titer of anthranilate production. Using the previously constructed shikimate-overproducing E. coli strain, two genes (aroK and aroL) were complemented, and the trpD responsible for transferring the phosphoribosyl group to anthranilate was disrupted to facilitate anthranilate accumulation. The genes with negative effects on anthranilate biosynthesis, including pheA, tyrA, pabA, ubiC, entC, and trpR, were disrupted. In contrast, several shikimate biosynthetic pathway genes, including aroE and tktA, were overexpressed to maximize glucose uptake and the intermediate flux. The rationally designed anthranilate-overproducing E. coli strain grown in an optimized medium produced approximately 4 g/L of anthranilate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for microbial-based anthranilate production will play a key role in complementing traditional chemical-based anthranilate production processes.

16.
J Ind Microbiol Biotechnol ; 39(10): 1563-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22733296

ABSTRACT

Tautomycetin (TMC), originally isolated from Streptomyces griseochromogenes, has been reported to possess biological functions including T cell-specific immunosuppressive and anticancer activities through a mechanism of differential inhibition of protein phosphatases such as PP1, PP2A, and SHP2. Independently isolated Streptomyces sp. CK4412 was also reported to produce a structurally identical TMC compound. Previously, we isolated and characterized the entire TMC biosynthetic gene cluster from Streptomyces sp. CK4412. In silico database comparison revealed a 1,359-bp tmcR as a putative bacterial Cytochrome P450 hydroxylase gene in the TMC biosynthetic gene cluster. Through targeted gene disruption and complementation, the tmcR mutant was confirmed to produce a C5-deoxy-TMC, the same analogue produced by the S. griseochromogenes ttnI mutant, implying that TmcR behaves as a regiospecific C5-oxygenase in the TMC biosynthetic pathway in Streptomyces sp. CK4412. In particular, the C5-deoxy-TMC from the tmcR mutant exhibited 3.2-fold higher inhibition activity toward SHP2 with significantly reduced inhibition activities toward PP1, and human Vero and lung cancer cells. These results suggested that C5 regiospecific modification of the TMC polyketide moiety may result in a drug development target for use in preferentially enhancing immunosuppressive activity while minimizing its undesirable biological activities.


Subject(s)
Furans/chemistry , Furans/metabolism , Lipids/chemistry , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mutation/genetics , Streptomyces/metabolism , Animals , Biosynthetic Pathways/genetics , Cell Line, Tumor , Chlorocebus aethiops , Furans/immunology , Genes, Bacterial/genetics , Humans , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/immunology , Immunosuppressive Agents/metabolism , Lipids/immunology , Multigene Family , Streptomyces/enzymology , Streptomyces/genetics , Vero Cells
17.
J Microbiol Biotechnol ; 32(8): 1041-1046, 2022 Aug 28.
Article in English | MEDLINE | ID: mdl-35791073

ABSTRACT

Nucleoside deoxyribosyltransferase (NDT) is an enzyme that replaces the purine or pyrimidine base of 2'-deoxyribonucleoside. This enzyme is generally used in the nucleotide salvage pathway in vivo and synthesizes many nucleoside analogs in vitro for various biotechnological purposes. Since NDT is known to exhibit relatively low reactivity toward nucleoside analogs such as 2'-fluoro-2'-deoxynucleoside, it is necessary to develop an enhanced NDT mutant enzyme suitable for nucleoside analogs. In this study, molecular evolution strategy via error-prone PCR was performed with ndt gene derived from Lactobacillus leichmannii as a template to obtain an engineered NDT with higher substrate specificity to 2FDU (2'-fluoro-2'-deoxyuridine). A mutant library of 214 ndt genes with different sequences was obtained and performed for the conversion of 2FDU to 2FDA (2'-fluoro-2'-deoxyadenosine). The E. coli containing a mutant NDT, named NDTL59Q, showed 1.7-fold (at 40°C) and 4.4-fold (at 50°C) higher 2FDU-to-2FDA conversions compared to the NDTWT, respectively. Subsequently, both NDTWT and NDTL59Q enzymes were over-expressed and purified using a His-tag system in E. coli. Characterization and enzyme kinetics revealed that the NDTL59Q mutant enzyme containing a single point mutation of leucine to glutamine at the 59th position exhibited superior thermal stability with enhanced substrate specificity to 2FDU.


Subject(s)
Escherichia coli , Nucleosides , Pentosyltransferases , Kinetics , Pentosyltransferases/chemistry , Substrate Specificity
18.
Front Bioeng Biotechnol ; 10: 964765, 2022.
Article in English | MEDLINE | ID: mdl-36046673

ABSTRACT

Polyene natural products including nystatin A1, amphotericin B, ECO-02301, and mediomycin belong to a large family of valuable antifungal polyketide compounds typically produced by soil actinomycetes. A previous study (Park et al., Front. Bioeng. Biotechnol., 2021, 9, 692340) isolated Streptomyces rubrisoli Inha501 with strong antifungal activity and analyzed a large-sized biosynthetic gene cluster (BGC) of a linear polyene compound named Inha-neotetrafibricin (I-NTF) using whole genome sequencing and bioinformatics. In the present study, an entire I-NTF BGC (∼167 kb) was isolated through construction and screening of Streptomyces BAC library. Overexpression of the cloned I-NTF BGC in the wild-type S. rubrisoli Inha501 and its heterologous expression in S. lividans led to 2.6-fold and 2.8-fold increase in I-NTF yields, respectively. The qRT-PCR confirmed that the transcription levels of I-NTF BGC were significantly increased in both homologous and heterologous hosts containing the BAC integration of I-NTF BGC. In addition, the I-NTF aglycone-producing strains were constructed by a target-specific deletion of glycosyltransferase gene present in I-NTF BGC. A comparison of the in vitro biological activities of I-NTF and I-NTF aglycone confirmed that the rhamnose sugar motif of I-NTF plays a critical role in both antifungal and antibacterial activities. These results suggest that the Streptomyces BAC cloning of a large-sized natural product BGC is a valuable approach for natural product titer improvement and biological activity screening of natural product in actinomycetes.

19.
J Microbiol Biotechnol ; 32(7): 911-917, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35719079

ABSTRACT

As valuable antibiotics, microbial natural products have been in use for decades in various fields. Among them are polyene compounds including nystatin, amphotericin, and nystatin-like Pseudonocardia polyenes (NPPs). Polyene macrolides are known to possess various biological effects, such as antifungal and antiviral activities. NPP A1, which is produced by Pseudonocardia autotrophica, contains a unique disaccharide moiety in the tetraene macrolide backbone. NPP B1, with a heptane structure and improved antifungal activity, was then developed via genetic manipulation of the NPP A1 biosynthetic gene cluster (BGC). Here, we generated a Streptomyces artificial chromosomal DNA library to isolate a large-sized NPP B1 BGC. The NPP B1 BGC was successfully isolated from P. autotrophica chromosome through the construction and screening of a bacterial artificial chromosome (BAC) library, even though the isolated 140-kb BAC clone (named pNPPB1s) lacked approximately 8 kb of the right-end portion of the NPP B1 BGC. The additional introduction of the pNPPB1s as well as co-expression of the 32-kb portion including the missing 8 kb led to a 7.3-fold increase in the production level of NPP B1 in P. autotrophica. The qRT-PCR confirmed that the transcription level of NPP B1 BGC was significantly increased in the P. autotrophica strain containing two copies of the NPP B1 BGCs. Interestingly, the NPP B1 exhibited a previously unidentified SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibition activity in vitro. These results suggest that the Streptomyces BAC cloning of a large-sized, natural product BGC is a valuable approach for titer improvement and biological activity screening of natural products in actinomycetes.


Subject(s)
Biological Products , COVID-19 , Streptomyces , Anti-Bacterial Agents , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chromosomes, Artificial, Bacterial/genetics , Cloning, Molecular , Humans , Macrolides/chemistry , Multigene Family , Nystatin/chemistry , Polyenes/chemistry , Polyenes/pharmacology , RNA, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Streptomyces/genetics
20.
Front Bioeng Biotechnol ; 9: 692340, 2021.
Article in English | MEDLINE | ID: mdl-34322478

ABSTRACT

Microbial-based eco-friendly biological substances are needed to protect crops from phytopathogenic fungi and replace toxic chemical fungicides that cause serious environmental issues. This study screened for soil antifungal Streptomyces strains, which produce rich, diverse, and valuable bioactive metabolites in the soil environment. Bioassay-based antifungal screening of approximately 2,400 Streptomyces strains led to the isolation of 149 strains as tentative antifungal producers. One Streptomyces strain showing the most potent antifungal activities against Candida albicans and Fusarium oxysporum was identified as a putative anti-phytopathogenic soil isolate that is highly homologous to Streptomyces rubrisoli (named S. rubrisoli Inha 501). An in vitro antifungal assay, pot-test, and field-test against various phytopathogenic fungi confirmed that S. rubrisoli Inha 501 is a potential novel phytopathogenic fungicide producer to protect various crops in the soil environment. Whole-genome sequencing of S. rubrisoli Inha 501 and an anti-SMASH genome mining approach revealed an approximately 150-kb polyene biosynthetic gene cluster (BGC) in the chromosome. The target compound isolation and its BGC analysis confirmed that the giant linear polyene compound exhibiting the anti-phytopathogenic activity in S. rubrisoli Inha 501 was highly homologous to the previously reported compound, neotetrafibricin A. These results suggest that a bioassay-based screening of a novel antifungal Streptomyces strain followed by its genome mining for target compound BGC characterization would be an efficient approach to isolating a novel candidate phytopathogenic fungicide that can protect crops in the soil environment.

SELECTION OF CITATIONS
SEARCH DETAIL