Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Small ; 20(2): e2305143, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670210

ABSTRACT

Molybdenum disulfide (MoS2 ), a metal dichalcogenide, is a promising channel material for highly integrated scalable transistors. However, intrinsic donor defect states, such as sulfur vacancies (Vs ), can degrade the channel properties and lead to undesired n-doping. A method for healing the donor defect states in monolayer MoS2 is proposed using oxygen plasma, with an aluminum oxide (Al2 O3 ) barrier layer that protects the MoS2 channel from damage by plasma treatment. Successful healing of donor defect states in MoS2 by oxygen atoms, even in the presence of an Al2 O3 barrier layer, is confirmed by X-ray photoelectron spectroscopy, photoluminescence, and Raman spectroscopy. Despite the decrease in 2D sheet carrier concentration (Δn2D = -3.82×1012 cm-2 ), the proposed approach increases the on-current and mobility by 18% and 44% under optimal conditions, respectively. Metal-insulator transition occurs at electron concentrations of 5.7×1012 cm-2 and reflects improved channel quality. Finally, the activation energy (Ea ) reduces at all the gate voltages (VG ) owing to a decrease in Vs , which act as a localized state after the oxygen plasma treatment. This study demonstrates the feasibility of plasma-assisted healing of defects in 2D materials and electrical property enhancement and paves the way for the development of next-generation electronic devices.

2.
Nano Lett ; 23(2): 451-461, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36637103

ABSTRACT

The coming of the big-data era brought a need for power-efficient computing that cannot be realized in the Von Neumann architecture. Neuromorphic computing which is motivated by the human brain can greatly reduce power consumption through matrix multiplication, and a device that mimics a human synapse plays an important role. However, many synaptic devices suffer from limited linearity and symmetry without using incremental step pulse programming (ISPP). In this work, we demonstrated a charge-trap flash (CTF)-based synaptic transistor using trap-level engineered Al2O3/Ta2O5/Al2O3 gate stack for successful neuromorphic computing. This novel gate stack provided precise control of the conductance with more than 6 bits. We chose the appropriate bias for highly linear and symmetric modulation of conductance and realized it with very short (25 ns) identical pulses at low voltage, resulting in low power consumption and high reliability. Finally, we achieved high learning accuracy in the training of 60000 MNIST images.

3.
Small ; 19(33): e2300223, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093184

ABSTRACT

Memristors are drawing attention as neuromorphic hardware components because of their non-volatility and analog programmability. In particular, electrochemical metallization (ECM) memristors are extensively researched because of their linear conductance controllability. Two-dimensional materials as switching medium of ECM memristors give advantages of fast speed, low power consumption, and high switching uniformity. However, the multistate retention in the switching conductance range for the long-term reliable neuromorphic system has not been achieved using two-dimensional materials-based ECM memristors. In this study, the copper migration-controlled ECM memristor showing excellent multistate retention characteristics in the switching conductance range using molybdenum disulfide (MoS2 ) and aluminum oxide (Al2 O3 ) is proposed. The fabricated device exhibits gradual resistive switching with low switching voltage (<0.5 V), uniform switching (σ/µ âˆ¼ 0.07), and a wide switching range (>12). Importantly, excellent reliabilities with robustness to cycling stress and retention over 104 s for more than 5-bit states in the switching conductance range are achieved. Moreover, the contribution of the Al2 O3 layer to the retention characteristic is investigated through filament morphology observation using transmission electron microscopy (TEM) and copper migration component analysis. This study provides a practical approach to developing highly reliable memristors with exceptional switching performance.

4.
Small ; 18(39): e2203165, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36026583

ABSTRACT

Organic/inorganic hybrid materials are utilized extensively as gate dielectric layers in organic thin-film transistors (OTFTs). However, inherently low dielectric constant of organic materials and lack of a reliable deposition process for organic layers hamper the broad application of hybrid dielectric materials. Here, a universal strategy to synthesize high-k hybrid dielectric materials by incorporating a high-k polymer layer on top of various inorganic layers generated by different fabrication methods, including AlOx and HfOx , is presented. Those hybrid dielectrics commonly exhibit high capacitance (>300 nF·cm-2 ) as well as excellent insulating properties. A vapor-phase deposition method is employed for precise control of the polymer film thickness. The ultralow-voltage (<3 V) OTFTs are demonstrated based on the hybrid dielectric layer with 100% yield and uniform electrical characteristics. Moreover, the exceptionally high stability of OTFTs for long-term operation (current change less than 5% even under 30 h of voltage stress at 2.0 MV·cm-1 ) is achieved. The hybrid dielectric is fully compatible with various substrates, which allows for the demonstration of intrinsically flexible OTFTs on the plastic substrate. It is believed that this approach for fabricating hybrid dielectrics by introducing the high-k organic material can be a promising strategy for future low-power, flexible electronics.

5.
Small ; 17(49): e2103775, 2021 12.
Article in English | MEDLINE | ID: mdl-34605173

ABSTRACT

A single transistor neuron (1T-neuron) is demonstrated by using a vertically protruded nanowire from an 8 in. silicon (Si) wafer. The 1T-neuron adopts a gate-all-around structure to completely surround the Si nanowire (Si-NW) to make a floating body and allow aggressive downscaling. The Si-NW is composed of an n+ drain at the top, n+ source at the bottom, and p-type floating body at the middle, which are self-aligned vertically. Thus, it occupies a small footprint area. The gate controls an excitatory/inhibitory function. In addition, myelination of a biological neuron that changes membrane capacitance is mimicked by an inherently asymmetric source/drain structure. Two spiking frequencies at the same input current are controlled by whether the neuron is myelinated or unmyelinated. Using the vertical 1T-neuron, pattern recognition is demonstrated with both measurements and semiempirical circuit simulations. Furthermore, handwritten numbers in the MNIST database are recognized with accuracy of 93% by software-based simulations. Applicability of the vertical 1T-neuron to various neural networks is verified, including a single-layer perceptron, multilayer perceptron, and spiking neural network.


Subject(s)
Nanowires , Silicon , Neural Networks, Computer , Neurons
6.
Nano Lett ; 20(5): 3740-3746, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32191476

ABSTRACT

Transition metal dichalcogenides (TMDs) have attracted great interest owing to their fascinating properties with atomically thin nature. Although TMDs have been exploited for diverse applications, the effective role of TMDs in the synthesis of metal nanowires has not been explored. Here, we propose a new approach to synthesize ultrathin metal nanowires using TMDs for the first time. High-quality ultrathin nanowires with an average diameter of 11.3 nm are successfully synthesized for realizing high-performance transparent conductors that exhibit excellent conductivity and transparency with low haze. The growth mechanism is carefully investigated using high-resolution transmission electron microscopy, and growth of nanowires with tunable diameters is achieved by controlling the nanosheet dimension. Finally, we unravel the important role of TMDs acting as both reducing and nucleating agents. Therefore, our work provides a new strategy of the TMD as an innovative material for the growth of metal nanowires as a promising building block in next-generation optoelectronics.

7.
Nano Lett ; 20(8): 5741-5748, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32589036

ABSTRACT

Band engineering using the van der Waals heterostructure of two-dimensional materials allows for the realization of high-performance optoelectronic devices by providing an ultrathin and uniform PN junction with sharp band edges. In this study, a highly sensitive photodetector based on the van der Waals heterostructure of WSe2 and MoS2 was developed. The MoS2 was utilized as the channel for a phototransistor, whereas the WSe2-MoS2 PN junction in the out-of-plane orientation was utilized as a charge transfer layer. The vertical built-in electric field in the PN junction separated the photogenerated carriers, thus leading to a high photoconductive gain of 106. The proposed phototransistor exhibited an excellent performance, namely, a high photoresponsivity of 2700 A/W, specific detectivity of 5 × 1011 Jones, and response time of 17 ms. The proposed scheme in conjunction with the large-area synthesis technology of two-dimensional materials contributes significantly to practical photodetector applications.

8.
Nano Lett ; 19(2): 839-849, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30608706

ABSTRACT

With the advent of artificial intelligence (AI), memristors have received significant interest as a synaptic building block for neuromorphic systems, where each synaptic memristor should operate in an analog fashion, exhibiting multilevel accessible conductance states. Here, we demonstrate that the transition of the operation mode in poly(1,3,5-trivinyl-1,3,5-trimethyl cyclotrisiloxane) (pV3D3)-based flexible memristor from conventional binary to synaptic analog switching can be achieved simply by reducing the size of the formed filament. With the quantized conductance states observed in the flexible pV3D3 memristor, analog potentiation and depression characteristics of the memristive synapse are obtained through the growth of atomically thin Cu filament and lateral dissolution of the filament via dominant electric field effect, respectively. The face classification capability of our memristor is evaluated via simulation using an artificial neural network consisting of pV3D3 memristor synapses. These results will encourage the development of soft neuromorphic intelligent systems.


Subject(s)
Copper/chemistry , Nanostructures/chemistry , Nanotechnology/instrumentation , Neural Networks, Computer , Siloxanes/chemistry , Artificial Intelligence , Electric Conductivity , Equipment Design , Face/anatomy & histology , Humans , Nanotechnology/methods
9.
Nano Lett ; 19(10): 6827-6838, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31476862

ABSTRACT

Achieving high emission efficiency in solid-state quantum dots (QDs) is an essential requirement for high-performance QD optoelectronics. However, most QD films suffer from insufficient excitation and light extraction efficiencies, along with nonradiative energy transfer between closely adjacent QDs. Herein, we suggest a highly effective strategy to enhance the photoluminescence (PL) of QD composite films through an assembly of QDs and poly(styrene-b-4-vinylpyridine)) (PS-b-P4VP) block copolymer (BCP). A BCP matrix casted under controlled humidity provides multiscale phase-separation features based on (1) submicrometer-scale spinodal decomposition between polymer-rich and water-rich phases and (2) sub-10 nm-scale microphase separation between polymer blocks. The BCP-QD composite containing bicontinuous random pores achieves significant enhancement of both light absorption and extraction efficiencies via effective random light scattering. Moreover, the microphase-separated morphology substantially reduces the Förster resonance energy transfer efficiency from 53% (pure QD film) to 22% (BCP-QD composite), collectively achieving an unprecedented 21-fold enhanced PL over a broad spectral range.

10.
Nano Lett ; 17(10): 6443-6452, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28892637

ABSTRACT

Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

11.
Small ; 11(11): 1293-300, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25521110

ABSTRACT

Graphene/silver nanowire (AgNWs) stacked electrodes, i.e., graphene/AgNWs, are fabricated on a glass substrate by air-spray coating of AgNWs followed by subsequent encapsulation via a wet transfer of single-layer graphene (SLG) and multilayer graphene (MLG, reference specimen) sheets. Here, graphene is introduced to improve the optical sintering efficiency of a xenon flash lamp by controlling optical transparency and light absorbing yield in stacked graphene/AgNW electrodes, facilitating the fusion at contacts of AgNWs. Intense pulsed light (IPL) sintering induced ultrafast (<20 ms) welding of AgNW junctions encapsulated by graphene, resulting in approximately a four-fold reduction in the sheet resistance of IPL-treated graphene/AgNWs compared to that of IPL-treated AgNWs. The role of graphene in IPL-treated graphene/AgNWs is further investigated as a passivation layer against thermal oxidation and sulfurization. This work demonstrates that optical sintering is an efficient way to provide fast welding of Ag wire-to-wire junctions in stacked electrodes of graphene/AgNWs, leading to enhanced conductivity as well as superior long-term stability under oxygen and sulfur atmospheres.

12.
Small ; 11(2): 175-81, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25104479

ABSTRACT

A method of graphene transfer without metal etching is developed to minimize the contamination of graphene in the transfer process and to endow the transfer process with a greater degree of freedom. The method involves direct delamination of single-layer graphene from a growth substrate, resulting in transferred graphene with nearly zero Dirac voltage due to the absence of residues that would originate from metal etching. Several demonstrations are also presented to show the high degree of freedom and the resulting versatility of this transfer method.

13.
Small ; 10(18): 3685-91, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-24832822

ABSTRACT

Graphene leading to high surface-to-volume ratio and outstanding conductivity is applied for gas molecule sensing with fully utilizing its unique transparent and flexible functionalities which cannot be expected from solid-state gas sensors. In order to attain a fast response and rapid recovering time, the flexible sensors also require integrated flexible and transparent heaters. Here, large-scale flexible and transparent gas molecule sensor devices, integrated with a graphene sensing channel and a graphene transparent heater for fast recovering operation, are demonstrated. This combined all-graphene device structure enables an overall device optical transmittance that exceeds 90% and reliable sensing performance with a bending strain of less than 1.4%. In particular, it is possible to classify the fast (≈14 s) and slow (≈95 s) response due to sp(2) -carbon bonding and disorders on graphene and the self-integrated graphene heater leads to the rapid recovery (≈11 s) of a 2 cm × 2 cm sized sensor with reproducible sensing cycles, including full recovery steps without significant signal degradation under exposure to NO2 gas.

14.
J Synchrotron Radiat ; 21(Pt 1): 170-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24365933

ABSTRACT

Here, an in situ probe for scanning transmission X-ray microscopy (STXM) has been developed and applied to the study of the bipolar resistive switching (BRS) mechanism in an Al/graphene oxide (GO)/Al resistive random access memory (RRAM) device. To perform in situ STXM studies at the C K- and O K-edges, both the RRAM junctions and the I0 junction were fabricated on a single Si3N4 membrane to obtain local XANES spectra at these absorption edges with more delicate I0 normalization. Using this probe combined with the synchrotron-based STXM technique, it was possible to observe unique chemical changes involved in the BRS process of the Al/GO/Al RRAM device. Reversible oxidation and reduction of GO induced by the externally applied bias voltages were observed at the O K-edge XANES feature located at 538.2 eV, which strongly supported the oxygen ion drift model that was recently proposed from ex situ transmission electron microscope studies.


Subject(s)
Graphite/chemistry , Microscopy/methods , Molecular Probes , Oxides/chemistry , X-Ray Absorption Spectroscopy
15.
Adv Sci (Weinh) ; 11(23): e2308847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38566434

ABSTRACT

Electrolyte-gated synaptic transistors (EGSTs) have attracted considerable attention as synaptic devices owing to their adjustable conductance, low power consumption, and multi-state storage capabilities. To demonstrate high-density EGST arrays, 2D materials are recommended owing to their excellent electrical properties and ultrathin profile. However, widespread implementation of 2D-based EGSTs has challenges in achieving large-area channel growth and finding compatible nanoscale solid electrolytes. This study demonstrates large-scale process-compatible, all-solid-state EGSTs utilizing molybdenum disulfide (MoS2) channels grown through chemical vapor deposition (CVD) and sub-30 nm organic-inorganic hybrid electrolyte polymers synthesized via initiated chemical vapor deposition (iCVD). The iCVD technique enables precise modulation of the hydroxyl group density in the hybrid matrix, allowing the modulation of proton conduction, resulting in adjustable synaptic performance. By leveraging the tunable iCVD-based hybrid electrolyte, the fabricated EGSTs achieve remarkable attributes: a wide on/off ratio of 109, state retention exceeding 103, and linear conductance updates. Additionally, the device exhibits endurance surpassing 5 × 104 cycles, while maintaining a low energy consumption of 200 fJ/spike. To evaluate the practicality of these EGSTs, a subset of devices is employed in system-level simulations of MNIST handwritten digit recognition, yielding a recognition rate of 93.2%.

16.
ACS Nano ; 18(1): 819-828, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38153349

ABSTRACT

As semiconductor scaling continues to reach sub-nanometer levels, two-dimensional (2D) semiconductors are emerging as a promising candidate for the post-silicon material. Among these alternatives, Bi2O2Se has risen as an exceptionally promising 2D semiconductor thanks to its excellent electrical properties, attributed to its appropriate bandgap and small effective mass. However, unlike other 2D materials, growth of large-scale Bi2O2Se films with precise layer control is still challenging due to its large surface energy caused by relatively strong interlayer electrostatic interactions. Here, we present the successful growth of a wafer-scale (∼3 cm) Bi2O2Se film with precise thickness control down to the monolayer level on TiO2-terminated SrTiO3 using metal-organic chemical vapor deposition (MOCVD). Scanning transmission electron microscopy (STEM) analysis confirmed the formation of a [BiTiO4]1- interfacial structure, and density functional theory (DFT) calculations revealed that the formation of [BiTiO4]1- significantly reduced the interfacial energy between Bi2O2Se and SrTiO3, thereby promoting 2D growth. Additionally, spectral responsivity measurements of two-terminal devices confirmed a bandgap increase of up to 1.9 eV in monolayer Bi2O2Se, which is consistent with our DFT calculations. Finally, we demonstrated high-performance Bi2O2Se field-effect transistor (FET) arrays, exhibiting an excellent average electron mobility of 56.29 cm2/(V·s). This process is anticipated to enable wafer-scale applications of 2D Bi2O2Se and facilitate exploration of intriguing physical phenomena in confined 2D systems.

17.
Nat Mater ; 11(11): 936-41, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23023552

ABSTRACT

The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics. In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour. Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial. Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (<λ/1,000,000), the one-atom-thick layer, in conjunction with the metamaterial, can modulate both the amplitude of the transmitted wave by up to 47% and its phase by 32.2° at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects.

18.
Nanotechnology ; 24(7): 075202, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23358524

ABSTRACT

We report an improvement of the optical power and thermal stability of GaN LEDs using a chemically doped graphene transparent conducting layer (TCL) and a low-resistance contact structure. In order to obtain low contact resistance between the TCL and p-GaN surface, a patterned graphene TCL with Cr/Au electrodes is suggested. A bi-layer patterning method of a graphene TCL was utilized to prevent the graphene from peeling off the p-GaN surface. To improve the work function and the sheet resistance of graphene, CVD (chemical vapor deposition) graphene was doped by a chemical treatment using a HNO(3) solution. The effect of the contact resistance on the power degradation of LEDs at a high injection current level was investigated. In addition, the enhancement of the optical power via an increase in the current spreading and a decrease in the potential barrier of the graphene TCL was investigated.

19.
ACS Nano ; 17(10): 9262-9271, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37158420

ABSTRACT

To overcome the image deterioration caused by pixel miniaturization resulting from the high-resolution trend of CIS (CMOS image sensor) technology, a photodiode working with an enhanced mechanism based on a distinctive device structure from the existing one is considerably required. In this study, our photodiode, consisting of gold nanoparticles/monolayer graphene/n-type trilayer MoS2/p-type Si bulk, achieved ultrafast rising/falling times of 28.6 ns/30.4 ns due to the spatially confined narrow depletion width (DW) resulting from the 2D/3D heterojunction. To compensate for the expected low absorbance due to the narrow DW, plasmonic gold nanoparticles on monolayer graphene are introduced, revealing broadband enhanced EQE of an average of 187% in the spectral range of 420-730 nm and the maximum EQE reaching 847% at 5 nW for a 520 nm wavelength. The broadband enhancement was further investigated through multiphysics simulation, and carrier multiplication in graphene was discussed for the reason for exceeding 100% EQE in our reverse biased photodiode.

20.
Adv Mater ; 35(46): e2305222, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37607534

ABSTRACT

High-entropy alloys (HEAs) provide unprecedented physicochemical properties over unary nanoparticles (NPs). According to the conventional alloying guideline (Hume-Rothery rule), however, only size-and-structure similar elements can be mixed, limiting the possible combinations of alloying elements. Recently, it has been reported that based on carbon thermal shocks (CTS) in a vacuum atmosphere at high temperature, ultrafast heating/cooling rates and high-entropy environment play a critical role in the synthesis of HEAs, ruling out the possibility of phase separation. Since the CTS requires conducting supports, the Joule-heating efficiencies rely on the carbon qualities, featuring difficulties in uniform heating along the large area. This work proposes a photo-thermal approach as an alternative and innovative synthetic method that is compatible with ambient air, large-area, remote process, and free of materials selection. Single flash irradiation on carbon nanofibers induced momentary high-temperature annealing (>1800 °C within 20 ms duration, and ramping/cooling rates >104 K s-1 ) to successfully decorate HEA NPs up to nine elements with excellent compatibility for large-scale synthesis (6.0 × 6.0 cm2 of carbon nanofiber paper). To demonstrate their feasibility toward applications, senary HEA NPs (PtIrFeNiCoCe) are designed and screened, showing high activity (ηoverall = 777 mV) and excellent stability (>5000 cycles) at the water splitting, including hydrogen evolution reactions and oxygen evolution reactions.

SELECTION OF CITATIONS
SEARCH DETAIL