Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
J Immunol ; 207(3): 809-823, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34282003

ABSTRACT

The transcription factor promyelocytic leukemia zinc finger (PLZF) is encoded by the BTB domain-containing 16 (Zbtb16) gene. Its repressor function regulates specific transcriptional programs. During the development of invariant NKT cells, PLZF is expressed and directs their effector program, but the detailed mechanisms underlying PLZF regulation of multistage NKT cell developmental program are not well understood. This study investigated the role of acetylation-induced PLZF activation on NKT cell development by analyzing mice expressing a mutant form of PLZF mimicking constitutive acetylation (PLZFON) mice. NKT populations in PLZFON mice were reduced in proportion and numbers of cells, and the cells present were blocked at the transition from developmental stage 1 to stage 2. NKT cell subset differentiation was also altered, with T-bet+ NKT1 and RORγt+ NKT17 subsets dramatically reduced and the emergence of a T-bet-RORγt- NKT cell subset with features of cells in early developmental stages rather than mature NKT2 cells. Preliminary analysis of DNA methylation patterns suggested that activated PLZF acts on the DNA methylation signature to regulate NKT cells' entry into the early stages of development while repressing maturation. In wild-type NKT cells, deacetylation of PLZF is possible, allowing subsequent NKT cell differentiation. Interestingly, development of other innate lymphoid and myeloid cells that are dependent on PLZF for their generation is not altered in PLZFON mice, highlighting lineage-specific regulation. Overall, we propose that specific epigenetic control of PLZF through acetylation levels is required to regulate normal NKT cell differentiation.


Subject(s)
Kruppel-Like Transcription Factors , Natural Killer T-Cells , Acetylation , Animals , Cell Differentiation , Immunity, Innate , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lymphocytes/metabolism , Mice , Natural Killer T-Cells/metabolism , Promyelocytic Leukemia Zinc Finger Protein
2.
Br J Haematol ; 196(3): 676-680, 2022 02.
Article in English | MEDLINE | ID: mdl-34562020

ABSTRACT

We assessed the diagnostic performances of erythropoietin and JAK2 mutations in 1,090 patients with suspected polycythemia who were referred for red cell mass (RCM) measurement. In patients with a high haematocrit and/or haemoglobin level, a low erythropoietin level (<=3·3 mUI/ml) and JAK2 mutation showed comparable positive predictive value (PPV) for true polycythemia (RCM>=125%), 92·1% and 90% respectively. A very-low erythropoietin level (<=1·99 mUI/ml) had a PPV of 100% for polycythemia vera (PV) diagnosis. We confirmed the correlations between RCM, erythropoietin and JAK2 variant allelic frequency in PV patients. This study prompts the need to revisit the role of EPO in PV diagnostic criteria.


Subject(s)
Erythropoietin/blood , Janus Kinase 2/genetics , Mutation , Polycythemia Vera/blood , Polycythemia Vera/genetics , Alleles , Amino Acid Substitution , Clinical Decision-Making , Disease Management , Erythrocyte Indices , Erythrocyte Volume , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Plasma Volume , Polycythemia Vera/diagnosis , Polycythemia Vera/epidemiology , Sensitivity and Specificity
3.
Mol Pharmacol ; 100(3): 283-294, 2021 09.
Article in English | MEDLINE | ID: mdl-34266924

ABSTRACT

Human SETD2 is the unique histone methyltransferase that generates H3K36 trimethylation (H3K36me3), an epigenetic mark that plays a key role in normal hematopoiesis. Interestingly, recurrent inactivating mutations of SETD2 and aberrant H3K36me3 are increasingly reported to be involved in hematopoietic malignancies. Benzene (BZ) is a ubiquitous environmental pollutant and carcinogen that causes leukemia. The leukemogenic properties of BZ depend on its biotransformation in the bone marrow into oxidative metabolites, in particular 1,4-benzoquinone (BQ). This hematotoxic metabolite can form DNA and protein adducts that result in the damage and the alteration of cellular processes. Recent studies suggest that BZ-dependent leukemogenesis could depend on epigenetic perturbations, notably aberrant histone methylation. We investigated whether H3K36 trimethylation by SETD2 could be impacted by BZ and its hematotoxic metabolites. Herein, we show that BQ, the major leukemogenic metabolite of BZ, inhibits irreversibly the human histone methyltransferase SETD2, resulting in decreased H3K36me3. Our mechanistic studies further indicate that the BQ-dependent inactivation of SETD2 is due to covalent binding of BQ to reactive Zn-finger cysteines within the catalytic domain of the enzyme. The formation of these quinoprotein adducts results in loss of enzyme activity and protein crosslinks/oligomers. Experiments conducted in hematopoietic cells confirm that exposure to BQ results in the formation of SETD2 crosslinks/oligomers and concomitant loss of H3K36me3 in cells. Taken together, our data indicate that BQ, a major hematotoxic metabolite of BZ, could contribute to BZ-dependent leukemogenesis by perturbing the functions of SETD2, a histone lysine methyltransferase of hematopoietic relevance. SIGNIFICANCE STATEMENT: Benzoquinone is a major leukemogenic metabolite of benzene. Dysregulation of histone methyltransferase is involved in hematopoietic malignancies. This study found that benzoquinone irreversibly impairs SET domain containing 2, a histone H3K36 methyltransferase that plays a key role in hematopoiesis. Benzoquinone forms covalent adducts on Zn-finger cysteines within the catalytic site, leading to loss of activity, protein crosslinks/oligomers, and concomitant decrease of H3K36me3 histone mark. These data provide evidence that a leukemogenic metabolite of benzene can impair a key epigenetic enzyme.


Subject(s)
Benzene/metabolism , Benzene/toxicity , Benzoquinones/toxicity , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Benzene/chemistry , Benzoquinones/chemistry , Cell Line , Cysteine/chemistry , Cysteine/drug effects , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Humans , Leukemia/chemically induced , Leukemia/genetics , Leukemia/metabolism , Methylation , Primary Cell Culture , Zinc Fingers/drug effects
4.
Nature ; 525(7569): 380-3, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26331539

ABSTRACT

Whether cancer is maintained by a small number of stem cells or is composed of proliferating cells with approximate phenotypic equivalency is a central question in cancer biology. In the stem cell hypothesis, relapse after treatment may occur by failure to eradicate cancer stem cells. Chronic myeloid leukaemia (CML) is quintessential to this hypothesis. CML is a myeloproliferative disorder that results from dysregulated tyrosine kinase activity of the fusion oncoprotein BCR-ABL. During the chronic phase, this sole genetic abnormality (chromosomal translocation Ph(+): t(9;22)(q34;q11)) at the stem cell level causes increased proliferation of myeloid cells without loss of their capacity to differentiate. Without treatment, most patients progress to the blast phase when additional oncogenic mutations result in a fatal acute leukaemia made of proliferating immature cells. Imatinib mesylate and other tyrosine kinase inhibitors (TKIs) that target the kinase activity of BCR-ABL have improved patient survival markedly. However, fewer than 10% of patients reach the stage of complete molecular response (CMR), defined as the point when BCR-ABL transcripts become undetectable in blood cells. Failure to reach CMR results from the inability of TKIs to eradicate quiescent CML leukaemia stem cells (LSCs). Here we show that the residual CML LSC pool can be gradually purged by the glitazones, antidiabetic drugs that are agonists of peroxisome proliferator-activated receptor-γ (PPARγ). We found that activation of PPARγ by the glitazones decreases expression of STAT5 and its downstream targets HIF2α and CITED2, which are key guardians of the quiescence and stemness of CML LSCs. When pioglitazone was given temporarily to three CML patients in chronic residual disease in spite of continuous treatment with imatinib, all of them achieved sustained CMR, up to 4.7 years after withdrawal of pioglitazone. This suggests that clinically relevant cancer eradication may become a generally attainable goal by combination therapy that erodes the cancer stem cell pool.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzamides/administration & dosage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/drug effects , PPAR gamma/agonists , Piperazines/administration & dosage , Pyrimidines/administration & dosage , Thiazolidinediones/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Basic Helix-Loop-Helix Transcription Factors/metabolism , Benzamides/pharmacology , Benzamides/therapeutic use , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , PPAR gamma/metabolism , Pioglitazone , Piperazines/pharmacology , Piperazines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Repressor Proteins/metabolism , STAT5 Transcription Factor/metabolism , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Trans-Activators/metabolism
5.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638998

ABSTRACT

During transformation, myelodysplastic syndromes (MDS) are characterized by reducing apoptosis of bone marrow (BM) precursors. Mouse models of high risk (HR)-MDS and acute myelogenous leukemia (AML) post-MDS using mutant NRAS and overexpression of human BCL-2, known to be poor prognostic indicators of the human diseases, were created. We have reported the efficacy of the BCL-2 inhibitor, ABT-737, on the AML post-MDS model; here, we report that this BCL-2 inhibitor also significantly extended survival of the HR-MDS mouse model, with reductions of BM blasts and lineage negative/Sca1+/KIT+ (LSK) cells. Secondary transplants showed increased survival in treated compared to untreated mice. Unlike the AML model, BCL-2 expression and RAS activity decreased following treatment and the RAS:BCL-2 complex remained in the plasma membrane. Exon-specific gene expression profiling (GEP) of HR-MDS mice showed 1952 differentially regulated genes upon treatment, including genes important for the regulation of stem cells, differentiation, proliferation, oxidative phosphorylation, mitochondrial function, and apoptosis; relevant in human disease. Spliceosome genes, found to be abnormal in MDS patients and downregulated in our HR-MDS model, such as Rsrc1 and Wbp4, were upregulated by the treatment, as were genes involved in epigenetic regulation, such as DNMT3A and B, upregulated upon disease progression and downregulated upon treatment.


Subject(s)
Biphenyl Compounds/administration & dosage , Gene Expression Regulation/drug effects , Monomeric GTP-Binding Proteins/metabolism , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/metabolism , Nitrophenols/administration & dosage , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , Sulfonamides/administration & dosage , Animals , Apoptosis/drug effects , Bone Marrow/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Profiling/methods , Kaplan-Meier Estimate , Mice , Mice, Transgenic , Monomeric GTP-Binding Proteins/genetics , Myelodysplastic Syndromes/mortality , Piperazines/administration & dosage , Proto-Oncogene Proteins c-bcl-2/genetics , Stem Cells/drug effects , Transcriptome/drug effects
6.
J Biol Chem ; 294(33): 12483-12494, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31248982

ABSTRACT

Protein tyrosine phosphatase, nonreceptor type 2 (PTPN2) is mainly expressed in hematopoietic cells, where it negatively regulates growth factor and cytokine signaling. PTPN2 is an important regulator of hematopoiesis and immune/inflammatory responses, as evidenced by loss-of-function mutations of PTPN2 in leukemia and lymphoma and knockout mice studies. Benzene is an environmental chemical that causes hematological malignancies, and its hematotoxicity arises from its bioactivation in the bone marrow to electrophilic metabolites, notably 1,4-benzoquinone, a major hematotoxic benzene metabolite. Although the molecular bases for benzene-induced leukemia are not well-understood, it has been suggested that benzene metabolites alter topoisomerases II function and thereby significantly contribute to leukemogenesis. However, several studies indicate that benzene and its hematotoxic metabolites may also promote the leukemogenic process by reacting with other targets and pathways. Interestingly, alterations of cell-signaling pathways, such as Janus kinase (JAK)/signal transducer and activator of transcription (STAT), have been proposed to contribute to benzene-induced malignant blood diseases. We show here that 1,4-benzoquinone directly impairs PTPN2 activity. Mechanistic and kinetic experiments with purified human PTPN2 indicated that this impairment results from the irreversible formation (kinact = 645 m-1·s-1) of a covalent 1,4-benzoquinone adduct at the catalytic cysteine residue of the enzyme. Accordingly, cell experiments revealed that 1,4-benzoquinone exposure irreversibly inhibits cellular PTPN2 and concomitantly increases tyrosine phosphorylation of STAT1 and expression of STAT1-regulated genes. Our results provide molecular and cellular evidence that 1,4-benzoquinone covalently modifies key signaling enzymes, implicating it in benzene-induced malignant blood diseases.


Subject(s)
Benzene , Benzoquinones/metabolism , Leukemia , Neoplasm Proteins , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , STAT1 Transcription Factor , Signal Transduction/drug effects , Benzene/pharmacokinetics , Benzene/pharmacology , HEK293 Cells , Humans , Jurkat Cells , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction/genetics
7.
Mol Pharmacol ; 96(2): 297-306, 2019 08.
Article in English | MEDLINE | ID: mdl-31221825

ABSTRACT

Etoposide is a widely prescribed anticancer drug that is, however, associated with an increased risk of secondary leukemia. Although the molecular basis underlying the development of these leukemias remains poorly understood, increasing evidence implicates the interaction of etoposide metabolites [i.e., etoposide quinone (EQ)] with topoisomerase II enzymes. However, effects of etoposide quinone on other cellular targets could also be at play. We investigated whether T-cell protein tyrosine phosphatase (TCPTP), a protein tyrosine phosphatase that plays a key role in normal and malignant hematopoiesis through regulation of Janus kinase/signal transducer and activator of transcription signaling, could be a target of EQ. We report here that EQ is an irreversible inhibitor of TCPTP phosphatase (IC50 = ∼7 µM, second-order rate inhibition constant of ∼810 M-1⋅min-1). No inhibition was observed with the parent drug. The inhibition by EQ was found to be due to the formation of a covalent adduct at the catalytic cysteine residue in the active site of TCPTP. Exposure of human hematopoietic cells (HL60 and Jurkat) to EQ led to inhibition of endogenous TCPTP and concomitant increase in STAT1 tyrosine phosphorylation. Our results suggest that in addition to alteration of topoisomerase II functions, EQ could also contribute to etoposide-dependent leukemogenesis through impairment of key hematopoietic signaling enzymes, such as TCPTP.


Subject(s)
Etoposide/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 2/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Quinones/pharmacology , Binding Sites , Catalytic Domain , Cysteine/metabolism , Down-Regulation , Gene Expression Regulation/drug effects , HL-60 Cells , Humans , Jurkat Cells , Phosphorylation/drug effects , Quinones/chemistry , STAT1 Transcription Factor/metabolism
8.
Ann Hematol ; 98(1): 111-118, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30259120

ABSTRACT

The JAK2V617F mutation is part of the major criteria for diagnosis of myeloproliferative neoplasms (MPN). Allele-specific quantitative PCR (qPCR) is the most prevalent method used in laboratories but with the advent of next-generation sequencing (NGS) techniques, we felt necessary to evaluate this approach for JAK2 mutations testing. Among DNA samples from 427 patients analyzed by qPCR and NGS, we found an excellent concordance between both methods when allelic burden was superior to 2% (the detection limit of our NGS assay). Only one sample among 298 was found negative by NGS while allelic burden by qPCR was 3%. Because NGS detection limit is higher, sensitivity was lower as exemplified by 21 samples found negative whereas qPCR measured allelic burdens between 0.1 and 1%. Importantly, quantitative data of samples found positive by both techniques were highly correlated (R2 = 0.9477). We also evaluated 40 samples tested for JAK2 exon 12 mutations by HRM. The concordance with NGS was of 100%. Using NGS, the full coding region of JAK2 was analyzed leading to identification of several variants outside of exon 12 and 14 which were previously described or not. Interestingly, we found one somatic mutation (c.1034A>T p.H345L) which induced constitutive activation of the JAK/STAT pathway leading to an increased proliferation of BaF/3 cells with low-dose EPO. This study showed that NGS is a robust method highly correlated to qPCR, although less sensitive, but providing the opportunity to identify other JAK2 variants with potential impact on disease initiation or evolution.


Subject(s)
Exons , Hematologic Neoplasms/genetics , High-Throughput Nucleotide Sequencing/methods , Janus Kinase 2/genetics , Mutation, Missense , Myeloproliferative Disorders/genetics , Amino Acid Substitution , Cell Line, Tumor , DNA Mutational Analysis/methods , Female , Humans , Janus Kinase 2/metabolism , Male , Real-Time Polymerase Chain Reaction/methods
9.
Haematologica ; 103(6): 972-981, 2018 06.
Article in English | MEDLINE | ID: mdl-29599206

ABSTRACT

Polycythemia vera is a chronic myeloproliferative neoplasm characterized by the JAK2V617F mutation, elevated blood cell counts and a high risk of thrombosis. Although the red cell lineage is primarily affected by JAK2V617F, the impact of mutated JAK2 on circulating red blood cells is poorly documented. Recently, we showed that in polycythemia vera, erythrocytes had abnormal expression of several proteins including Lu/BCAM adhesion molecule and proteins from the endoplasmic reticulum, mainly calreticulin and calnexin. Here we investigated the effects of hydroxycarbamide and interferon-α treatments on the expression of erythroid membrane proteins in a cohort of 53 patients. Surprisingly, while both drugs tended to normalize calreticulin expression, proteomics analysis showed that hydroxycarbamide deregulated the expression of 53 proteins in red cell ghosts, with overexpression and downregulation of 37 and 16 proteins, respectively. Within over-expressed proteins, hydroxycarbamide was found to enhance the expression of adhesion molecules such as Lu/BCAM and CD147, while interferon-α did not. In addition, we found that hydroxycarbamide increased Lu/BCAM phosphorylation and exacerbated red cell adhesion to its ligand laminin. Our study reveals unexpected adverse effects of hydroxycarbamide on red cell physiology in polycythemia vera and provides new insights into the effects of this molecule on gene regulation and protein recycling or maturation during erythroid differentiation. Furthermore, our study shows deregulation of Lu/BCAM and CD147 that are two ubiquitously expressed proteins linked to progression of solid tumors, paving the way for future studies to address the role of hydroxycarbamide in tissues other than blood cells in myeloproliferative neoplasms.


Subject(s)
Cell Adhesion Molecules/genetics , Erythrocytes/drug effects , Erythrocytes/metabolism , Gene Expression Regulation/drug effects , Hydroxyurea/pharmacology , Membrane Proteins/genetics , Polycythemia Vera/genetics , Alleles , Biomarkers , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Adhesion Molecules/metabolism , Erythrocyte Membrane/metabolism , Erythrocytes/pathology , Female , Humans , Janus Kinase 2/genetics , Male , Membrane Proteins/metabolism , Middle Aged , Mutation , Polycythemia Vera/blood , Polycythemia Vera/diagnosis
10.
EMBO J ; 32(13): 1941-52, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23727884

ABSTRACT

Germ cells and adult stem cells maintain tissue homeostasis through a finely tuned program of responses to both physiological and stress-related signals. PLZF (Promyelocytic Leukemia Zinc Finger protein), a member of the POK family of transcription factors, acts as an epigenetic regulator of stem cell maintenance in germ cells and haematopoietic stem cells. We identified L1 retrotransposons as the primary targets of PLZF. PLZF-mediated DNA methylation induces silencing of the full-length L1 gene and inhibits L1 retrotransposition. Furthermore, PLZF causes the formation of barrier-type boundaries by acting on inserted truncated L1 sequences in protein coding genes. Cell stress releases PLZF-mediated repression, resulting in L1 activation/retrotransposition and impaired spermatogenesis and myelopoiesis. These results reveal a novel mechanism of action by which, PLZF represses retrotransposons, safeguarding normal progenitor homeostasis.


Subject(s)
Epigenomics , Gene Expression Regulation , Germ Cells/metabolism , Kruppel-Like Transcription Factors/physiology , Long Interspersed Nucleotide Elements/genetics , Stem Cells/metabolism , Transcription Factors/metabolism , 5' Untranslated Regions/genetics , Animals , Cell Differentiation , Chromatin Immunoprecipitation , DNA Methylation , Germ Cells/cytology , Mice , Promyelocytic Leukemia Zinc Finger Protein , Stem Cells/cytology , Transcription, Genetic
11.
Blood ; 126(24): 2585-91, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26486786

ABSTRACT

Myeloproliferative neoplasms are clonal disorders characterized by the presence of several gene mutations associated with particular hematologic parameters, clinical evolution, and prognosis. Few therapeutic options are available, among which interferon α (IFNα) presents interesting properties like the ability to induce hematologic responses (HRs) and molecular responses (MRs) in patients with JAK2 mutation. We report on the response to IFNα therapy in a cohort of 31 essential thrombocythemia (ET) patients with CALR mutations (mean follow-up of 11.8 years). HR was achieved in all patients. Median CALR mutant allelic burden (%CALR) significantly decreased from 41% at baseline to 26% after treatment, and 2 patients even achieved complete MR. In contrast, %CALR was not significantly modified in ET patients treated with hydroxyurea or aspirin only. Next-generation sequencing identified additional mutations in 6 patients (affecting TET2, ASXL1, IDH2, and TP53 genes). The presence of additional mutations was associated with poorer MR on CALR mutant clones, with only minor or no MRs in this subset of patients. Analysis of the evolution of the different variant allele frequencies showed that the mutated clones had a differential sensitivity to IFNα in a given patient, but no new mutation emerged during treatment. In all, this study shows that IFNα induces high rates of HRs and MRs in CALR-mutated ET, and that the presence of additional nondriver mutations may influence the MR to therapy.


Subject(s)
Calreticulin/genetics , Interferon-alpha/therapeutic use , Mutation , Polyethylene Glycols/therapeutic use , Thrombocythemia, Essential/drug therapy , Adolescent , Adult , Alleles , Aspirin/therapeutic use , Clonal Evolution/drug effects , Clone Cells/drug effects , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Dioxygenases , Female , Follow-Up Studies , Genes, p53 , Humans , Hydroxyurea/therapeutic use , Interferon-alpha/adverse effects , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Off-Label Use , Polyethylene Glycols/adverse effects , Proto-Oncogene Proteins/genetics , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Remission Induction , Repressor Proteins/genetics , Thrombocythemia, Essential/blood , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/pathology , Young Adult
13.
Cancer ; 121(14): 2393-9, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25845577

ABSTRACT

BACKGROUND: Reports of patients with secondary acute promyelocytic leukemia (APL) have increased in recent years, particularly for those who received treatment with mitoxantrone, and retrospective studies have suggested that their characteristics and outcomes were similar to those of patients with de novo APL. METHODS: The authors investigated patients with de novo and secondary APL who were included in the ongoing APL-2006 trial. Patients with secondary APL who were included in that trial also were compared with a previous retrospective cohort of patients with secondary APL. RESULTS: In the APL-2006 trial, 42 of 280 patients (15%) had secondary APL. Compared with the retrospective cohort, patients with secondary APL in the APL-2006 trial had a lower incidence of prior breast carcinoma (35.7% vs 57%; P = .03) and a higher incidence of prior prostate carcinoma (26.2% vs 4.7%; P < .001). Treatment of the primary tumor in the APL-2006 trial less frequently included combined radiochemotherapy (28.6% vs 47.2%; P = .044) and no mitoxantrone (0% vs 46.7%; P = .016) but more frequently included anthracyclines (53.3% vs 38.3%; P = .015). In the APL-2006 trial, patients who had secondary APL, compared with those who had de novo APL, were older (mean, 60.2 years vs 48.7 years, respectively; P < .0001) but had a similar complete response rate (97.6% vs 90.3%, respectively), cumulative incidence of relapse (0% vs 1.8%, respectively), and overall survival (92.3% vs 90.9%, respectively) at 18 months. CONCLUSIONS: Although the incidence of secondary APL appears to be stable over time, evolving strategies for the treatment of primary cancers have reduced its occurrence among breast cancer patients but have increased its incidence among patients with prostate cancer. The current results confirm prospectively that patients with secondary APL have characteristics and outcomes similar to those of patients with de novo APL.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Promyelocytic, Acute/epidemiology , Leukemia, Promyelocytic, Acute/therapy , Adult , Aged , Anthracyclines/administration & dosage , Belgium/epidemiology , Chemoradiotherapy , Female , France/epidemiology , Humans , Incidence , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/pathology , Male , Middle Aged , Mitoxantrone/administration & dosage , Prospective Studies , Recurrence , Switzerland/epidemiology
14.
Blood ; 121(4): 658-65, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23160466

ABSTRACT

Polycythemia vera (PV) is characterized by an increased RBC mass, spontaneous erythroid colony formation, and the JAK2V617F mutation. PV is associated with a high risk of mesenteric and cerebral thrombosis. PV RBC adhesion to endothelial laminin is increased and mediated by phosphorylated erythroid Lu/BCAM. In the present work, we investigated the mechanism responsible for Lu/BCAM phosphorylation in the presence of JAK2V617F using HEL and BaF3 cell lines as well as RBCs from patients with PV. High levels of Rap1-GTP were found in HEL and BaF3 cells expressing JAK2V617F compared with BaF3 cells with wild-type JAK2. This finding was associated with increased Akt activity, Lu/BCAM phosphorylation, and cell adhesion to laminin that were inhibited by the dominant-negative Rap1S17N or by the specific Rap1 inhibitor GGTI-298. Surprisingly, knocking-down EpoR in HEL cells did not alter Akt activity or cell adhesion to laminin. Our findings reveal a novel EpoR-independent Rap1/Akt signaling pathway that is activated by JAK2V617F in circulating PV RBCs and responsible for Lu/BCAM activation. This new characteristic of JAK2V617F could play a critical role in initiating abnormal interactions among circulating and endothelial cells in patients with PV.


Subject(s)
Cell Adhesion Molecules/metabolism , Erythrocytes/metabolism , Janus Kinase 2/metabolism , Lutheran Blood-Group System/metabolism , Polycythemia Vera/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Erythropoietin/metabolism , rap1 GTP-Binding Proteins/metabolism , Aged , Aged, 80 and over , Animals , Cell Adhesion/genetics , Cell Adhesion Molecules/genetics , Cell Line , Female , Humans , Janus Kinase 2/genetics , Laminin/metabolism , Lutheran Blood-Group System/genetics , Male , Mice , Middle Aged , Phosphorylation , Polycythemia Vera/genetics , Signal Transduction
15.
Blood ; 122(16): 2864-76, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-23943652

ABSTRACT

Myelodysplastic syndrome (MDS) transforms into an acute myelogenous leukemia (AML) with associated increased bone marrow (BM) blast infiltration. Using a transgenic mouse model, MRP8[NRASD12/hBCL-2], in which the NRAS:BCL-2 complex at the mitochondria induces MDS progressing to AML with dysplastic features, we studied the therapeutic potential of a BCL-2 homology domain 3 mimetic inhibitor, ABT-737. Treatment significantly extended lifespan, increased survival of lethally irradiated secondary recipients transplanted with cells from treated mice compared with cells from untreated mice, with a reduction of BM blasts, Lin-/Sca-1(+)/c-Kit(+), and progenitor populations by increased apoptosis of infiltrating blasts of diseased mice assessed in vivo by technicium-labeled annexin V single photon emission computed tomography and ex vivo by annexin V/7-amino actinomycin D flow cytometry, terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling, caspase 3 cleavage, and re-localization of the NRAS:BCL-2 complex from mitochondria to plasma membrane. Phosphoprotein analysis showed restoration of wild-type (WT) AKT or protein kinase B, extracellular signal-regulated kinase 1/2 and mitogen-activated protein kinase patterns in spleen cells after treatment, which showed reduced mitochondrial membrane potential. Exon specific gene expression profiling corroborates the reduction of leukemic cells, with an increase in expression of genes coding for stem cell development and maintenance, myeloid differentiation, and apoptosis. Myelodysplastic features persist underscoring targeting of BCL-2-mediated effects on MDS-AML transformation and survival of leukemic cells.


Subject(s)
Biphenyl Compounds/pharmacology , Leukemia, Myeloid, Acute/metabolism , Nitrophenols/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , ras Proteins/metabolism , Animals , Antigens, Ly/metabolism , Cell Lineage , Cell Membrane/metabolism , Cell Proliferation , Cell Transformation, Neoplastic , Cell Transplantation , Disease Models, Animal , Flow Cytometry , Gene Expression Regulation, Leukemic , MAP Kinase Signaling System , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Mitochondria/metabolism , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/metabolism , Stem Cells/cytology
18.
Anal Biochem ; 486: 35-7, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26099937

ABSTRACT

CREB-binding protein (CBP) is a lysine acetyltransferase that regulates transcription by acetylating histone and non-histone substrates. Defects in CBP activity are associated with hematologic malignancies, neurodisorders, and congenital malformations. Sensitive and quantitative enzymatic assays are essential to better characterize the pathophysiological features of CBP. We describe a sensitive nonradioactive method to measure purified and immunopurified cellular CBP enzymatic activity through rapid reverse phase-ultra-fast liquid chromatography (RP-UFLC) analysis of fluorescent histone H3 peptide substrates. The applicability and biological relevance of the assay are supported by kinetic, inhibition, and immunoprecipitation studies. More broadly, this approach could be easily adapted to assay other lysine acetyltransferases or methyltransferases.


Subject(s)
CREB-Binding Protein/metabolism , Enzyme Assays/methods , Fluorescent Dyes/metabolism , Histones/chemistry , Peptide Fragments/metabolism , Amino Acid Sequence , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Fluorescent Dyes/chemistry , Humans , Kinetics , Molecular Sequence Data , Peptide Fragments/chemistry
19.
J Med Genet ; 51(10): 689-97, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25097206

ABSTRACT

BACKGROUND: Infants with Noonan syndrome (NS) are predisposed to developing juvenile myelomonocytic leukaemia (JMML) or JMML-like myeloproliferative disorders (MPD). Whereas sporadic JMML is known to be aggressive, JMML occurring in patients with NS is often considered as benign and transitory. However, little information is available regarding the occurrence and characteristics of JMML in NS. METHODS AND RESULTS: Within a large prospective cohort of 641 patients with a germline PTPN11 mutation, we identified MPD features in 36 (5.6%) patients, including 20 patients (3%) who fully met the consensus diagnostic criteria for JMML. Sixty percent of the latter (12/20) had severe neonatal manifestations, and 10/20 died in the first month of life. Almost all (11/12) patients with severe neonatal JMML were males. Two females who survived MPD/JMML subsequently developed another malignancy during childhood. Although the risk of developing MPD/JMML could not be fully predicted by the underlying PTPN11 mutation, some germline PTPN11 mutations were preferentially associated with myeloproliferation: 10/48 patients with NS (20.8%) with a mutation in codon Asp61 developed MPD/JMML in infancy. Patients with a p.Thr73Ile mutation also had more chances of developing MPD/JMML but with a milder clinical course. SNP array and whole exome sequencing in paired tumoral and constitutional samples identified no second acquired somatic mutation to explain the occurrence of myeloproliferation. CONCLUSIONS: JMML represents the first cause of death in PTPN11-associated NS. Few patients have been reported so far, suggesting that JMML may sometimes be overlooked due to early death, comorbidities or lack of confirmatory tests.


Subject(s)
Leukemia, Myelomonocytic, Juvenile/complications , Leukemia, Myelomonocytic, Juvenile/genetics , Noonan Syndrome/complications , Noonan Syndrome/genetics , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Kaplan-Meier Estimate , Leukemia, Myelomonocytic, Juvenile/mortality , Leukemia, Myelomonocytic, Juvenile/physiopathology , Male , Mutation , Noonan Syndrome/mortality , Noonan Syndrome/physiopathology , Prospective Studies , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
SELECTION OF CITATIONS
SEARCH DETAIL