Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
2.
Mol Psychiatry ; 25(11): 2889-2904, 2020 11.
Article in English | MEDLINE | ID: mdl-30911107

ABSTRACT

Various mechanisms involved in schizophrenia pathophysiology, such as dopamine dysregulation, glutamate/NMDA receptor dysfunction, neuroinflammation or redox imbalance, all appear to converge towards an oxidative stress "hub" affecting parvalbumine interneurones (PVI) and their perineuronal nets (PNN) (Lancet Psychiatry. 2015;2:258-70); (Nat Rev Neurosci. 2016;17:125-34). We aim to investigate underlying mechanisms linking oxidative stress with neuroinflammatory and their long-lasting harmful consequences. In a transgenic mouse of redox dysregulation carrying a permanent deficit of glutathione synthesis (gclm-/-), the anterior cingulate cortex presented early in the development increased oxidative stress which was prevented by the antioxidant N-acetylcysteine (Eur J Neurosci. 2000;12:3721-8). This oxidative stress induced microglia activation and redox-sensitive matrix metalloproteinase 9 (MMP9) stimulation, leading to the receptor for advanced glycation end-products (RAGE) shedding into soluble and nuclear forms, and subsequently to nuclear factor-kB (NF-kB) activation and secretion of various cytokines. Blocking MMP9 activation prevented this sequence of alterations and rescued the normal maturation of PVI/PNN, even if performed after an additional insult that exacerbated the long term PVI/PNN impairments. MMP9 inhibition thus appears to be able to interrupt the vicious circle that maintains the long-lasting deleterious effects of the reciprocal interaction between oxidative stress and neuroinflammation, impacting on PVI/PNN integrity. Translation of these experimental findings to first episode patients revealed an increase in plasma soluble RAGE relative to healthy controls. This increase was associated with low prefrontal GABA levels, potentially predicting a central inhibitory/excitatory imbalance linked to RAGE shedding. This study paves the way for mechanistically related biomarkers needed for early intervention and MMP9/RAGE pathway modulation may lead to promising drug targets.


Subject(s)
Inflammation/metabolism , Matrix Metalloproteinase 9/metabolism , Neuroimmunomodulation , Receptor for Advanced Glycation End Products/metabolism , Schizophrenia/metabolism , Adult , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Oxidation-Reduction , Oxidative Stress
3.
Neurobiol Dis ; 88: 44-54, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26777664

ABSTRACT

The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis.


Subject(s)
Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Tyrosine 3-Monooxygenase/metabolism , Analysis of Variance , Animals , Cell Membrane/metabolism , Corpus Striatum/cytology , Dopamine/metabolism , Enzyme-Linked Immunosorbent Assay , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Immunoprecipitation , Ligation , Male , Rats , Rats, Sprague-Dawley , Transduction, Genetic , Tritium/metabolism , alpha-Synuclein/metabolism
4.
Br J Clin Pharmacol ; 76(2): 217-32, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23331189

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors mediating long term transgene expression are excellent gene therapy tools for chronic neurological diseases. While rAAV2 was the first serotype tested in the clinics, more efficient vectors derived from the rh10 serotype are currently being evaluated and other serotypes are likely to be tested in the near future. In addition, aside from the currently used stereotaxy-guided intraparenchymal delivery, new techniques for global brain transduction (by intravenous or intra-cerebrospinal injections) are very promising. Various strategies for therapeutic gene delivery to the central nervous system have been explored in human clinical trials in the past decade. Canavan disease, a genetic disease caused by an enzymatic deficiency, was the first to be approved. Three gene transfer paradigms for Parkinson's disease have been explored: converting L-dopa into dopamine through AADC gene delivery in the putamen; synthesizing GABA through GAD gene delivery in the overactive subthalamic nucleus and providing neurotrophic support through neurturin gene delivery in the nigro-striatal pathway. These pioneer clinical trials demonstrated the safety and tolerability of rAAV delivery in the human brain at moderate doses. Therapeutic effects however, were modest, emphasizing the need for higher doses of the therapeutic transgene product which could be achieved using more efficient vectors or expression cassettes. This will require re-addressing pharmacological aspects, with attention to which cases require either localized and cell-type specific expression or efficient brain-wide transgene expression, and when it is necessary to modulate or terminate the administration of transgene product. The ongoing development of targeted and regulated rAAV vectors is described.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques/standards , Genetic Therapy/methods , Nervous System Diseases/therapy , Central Nervous System/drug effects , Central Nervous System/metabolism , Clinical Trials as Topic , Humans , Legislation, Drug
5.
Mol Ther ; 19(7): 1245-53, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21364542

ABSTRACT

Recombinant adeno-associated virus (rAAV) are effective gene delivery vehicles that can mediate long-lasting transgene expression. However, tight regulation and tissue-specific transgene expression is required for certain therapeutic applications. For regulatable expression from the liver we designed a hepatospecific bidirectional and autoregulatory tetracycline (Tet)-On system (Tet(bidir)Alb) flanked by AAV inverted terminal repeats (ITRs). We characterized the inducible hepatospecific system in comparison with an inducible ubiquitous expression system (Tet(bidir)CMV) using luciferase (luc). Although the ubiquitous system led to luc expression throughout the mouse, luc expression derived from the hepatospecific system was restricted to the liver. Interestingly, the induction rate of the Tet(bidir)Alb was significantly higher than that of Tet(bidir)CMV, whereas leakage of Tet(bidir)Alb was significantly lower. To evaluate the therapeutic potential of this vector, an AAV-Tet(bidir)-Alb-expressing interleukin-12 (IL-12) was tested in a murine model for hepatic colorectal metastasis. The vector induced dose-dependent levels of IL-12 and interferon-γ (IFN-γ), showing no significant toxicity. AAV-Tet(bidir)-Alb-IL-12 was highly efficient in preventing establishment of metastasis in the liver and induced an efficient T-cell memory response to tumor cells. Thus, we have demonstrated persistent, and inducible in vivo expression of a gene from a liver-specific Tet-On inducible construct delivered via an AAV vector and proved to be an efficient tool for treating liver cancer.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Interleukin-12/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Tetracycline/pharmacology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases , Cell Line , Doxycycline/pharmacology , Female , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Genetic Therapy/methods , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Interferon-gamma , Interleukin-12/genetics , Liver Neoplasms/genetics , Male , Mice , Mice, Inbred BALB C
6.
J Gene Med ; 11(10): 899-912, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19639608

ABSTRACT

BACKGROUND: Efficient protection of dopaminergic neurons against a subsequent 6-hydroxydopamine lesion by glial cell line-derived neurotrophic factor (GDNF) gene delivery has been demonstrated. By contrast, the neurorestorative effects of GDNF administered several weeks after the toxin have been less characterized. In particular, whether these were permanent or dependent on the continuous presence of GDNF remains elusive. METHODS: A tetracycline-inducible adeno-associated virus (AAV)-1 vector expressing human GDNF cDNA was administered unilaterally in the rat striatum 5 weeks after 6-hydroxydopamine. Rats were treated with doxycycline (dox) or untreated from the day of vector injection until sacrifice (4 or 14 weeks). A sub-group was dox-treated for 7 weeks then untreated until 14 weeks. The motor behavior was assessed by amphetamine-induced rotations and spontaneous forelimb asymmetry. The amounts of tyrosine hydroxylase (TH), serine-40-phosphorylated TH (S40-TH) and aromatic amino acid decarboxylase (AADC) proteins were compared by western blotting and the dopamine levels quantified by high-performance liquid chromatography. RESULTS: Dox-dependent behavioral improvements were demonstrated 4 weeks post-vector injection. At later time points, spontaneous partial recovery was observed in all rats, but no further improvement was found in dox-treated animals. TH levels were significantly increased in dox-treated rats at all time points. By contrast, striatal dopamine and S40-TH were increased at 4 weeks, but not 14 weeks, and AADC remained unchanged. Dox withdrawal after 7 weeks, resulted in TH levels comparable to the controls at 14 weeks. CONCLUSIONS: Delayed GDNF gene delivery only transiently improved dopaminergic function. Over the long term, TH was more abundant, but not functional, and the increase was lost when GDNF gene expression was switched off.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Parkinson Disease, Secondary/metabolism , Parkinson Disease, Secondary/therapy , Adrenergic Agents/administration & dosage , Adrenergic Agents/adverse effects , Animals , Dependovirus/genetics , Dopamine/analysis , Dopamine/biosynthesis , Doxycycline/administration & dosage , Female , Gene Expression/drug effects , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Genetic Vectors/metabolism , Glial Cell Line-Derived Neurotrophic Factor/biosynthesis , Glial Cell Line-Derived Neurotrophic Factor/genetics , Humans , Motor Activity/drug effects , Oxidopamine/administration & dosage , Oxidopamine/adverse effects , Parkinson Disease, Secondary/chemically induced , Rats , Time Factors , Tyrosine 3-Monooxygenase/analysis , Tyrosine 3-Monooxygenase/biosynthesis
7.
Acta Biomater ; 60: 167-180, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28735026

ABSTRACT

Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC injection into the caudal spinal parenchyma would further enhance regeneration of descending axons to re-enter the host spinal cord. Our data show that both serotonergic and descending axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number of regenerating axons is significantly increased when caudal BDNF expression is activated and transient BDNF delivery is able to sustain axons after gene expression is switched off. Descending axons are confined to the caudal graft/host interface even with continuous BDNF expression for 8weeks. Only with a caudal injection of SCs, a pathway facilitating axonal regeneration through the host/graft interface is generated allowing axons to successfully re-enter the caudal spinal cord. STATEMENT OF SIGNIFICANCE: Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have shown some promise in increasing the growth distance of regenerating axons. In the present study, we combined an alginate biomaterial with linear channels with transplantation of Schwann cells within and beyond the lesion site and injection of a regulatable vector for the transient expression of brain-derived neurotrophic factor (BDNF). Our data show that only with the full combination axons extend across the lesion site and that expression of BDNF beyond 4weeks does not further increase the number of regenerating axons.


Subject(s)
Alginates , Axons/physiology , Brain-Derived Neurotrophic Factor , Dependovirus , Hydrogels , Regeneration , Schwann Cells , Spinal Cord Injuries/therapy , Transduction, Genetic , Alginates/chemistry , Alginates/pharmacology , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Brain-Derived Neurotrophic Factor/genetics , Female , Genetic Vectors , Glucuronic Acid/chemistry , Glucuronic Acid/pharmacology , Hexuronic Acids/chemistry , Hexuronic Acids/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Rats, Inbred F344 , Rats, Transgenic , Schwann Cells/metabolism , Schwann Cells/pathology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
8.
Mol Ther Methods Clin Dev ; 5: 16027, 2016.
Article in English | MEDLINE | ID: mdl-27069954

ABSTRACT

Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 10(9) viral genomes) was injected in the rat striatum at four delivery sites and increasing doxycycline doses administered orally. ERK/Akt signaling activation as well as tyrosine hydroxylase downregulation, a consequence of long-term GDNF treatment, were induced at plasmatic doxycycline concentrations of 140 and 320 ng/ml respectively, which are known not to increase antibiotic-resistant microorganisms in patients. In these conditions, GDNF covered the majority of the striatum. No behavioral abnormalities or weight loss were observed. Motor asymmetry resulting from unilateral GDNF treatment only appeared with a 2.5-fold higher vector and a 13-fold higher inducer doses. Our data suggest that using the herein-described inducible AAV vector, biological effects of GDNF can be obtained in response to sub-antimicrobial doxycycline doses.

9.
Neurosci Lett ; 352(3): 155-8, 2003 Dec 11.
Article in English | MEDLINE | ID: mdl-14625008

ABSTRACT

Minocycline has been suggested to be an anti-apoptotic compound and an anti-inflammatory agent in various models of neurodegeneration. In the present study, using a stable cell line expressing green fluorescent protein under the control of a tetracycline-responsive promoter, we demonstrate that minocycline is able to promote tetracycline-controlled gene expression although it needs longer time and higher concentration to reach the effect obtained with the classical inducer doxycycline. Furthermore, the extinction of the system after antibiotics removal is faster when using minocycline. Interestingly, minocycline displays lower cytotoxicity than doxycycline. It is thus tempting to speculate that combining the intrinsic neuroprotective activity of minocycline with its ability to induce tetracycline-regulatable promoters would be greatly beneficial for neuroprotective/neurorestaurative gene therapy.


Subject(s)
Gene Expression Regulation/drug effects , Minocycline/pharmacology , Promoter Regions, Genetic/drug effects , Tetracycline/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans
10.
Front Mol Neurosci ; 7: 92, 2014.
Article in English | MEDLINE | ID: mdl-25520614

ABSTRACT

We have previously demonstrated disease-dependent gene delivery in the brain using an AAV vector responding to NFκB activation as a probe for inflammatory responses. This vector, injected focally in the parenchyma prior to a systemic kainic acid (KA) injection mediated inducible transgene expression in the hippocampus but not in the cerebellum, regions, respectively, known to be affected or not by the pathology. However, such a focal approach relies on previous knowledge of the model parameters and does not allow to predict the whole brain response to the disease. Global brain gene delivery would allow to predict the regional distribution of the pathology as well as to deliver therapeutic factors in all affected brain regions. We show that self-complementary AAV2/9 (scAAV2/9) delivery in the adult rat cisterna magna allows a widespread but not homogenous transduction of the brain. Indeed, superficial regions, i.e., cortex, hippocampus, and cerebellum were more efficiently transduced than deeper regions, such as striatum, and substantia nigra. These data suggest that viral particles penetration from the cerebrospinal fluid (CSF) into the brain is a limiting factor. Interestingly, AAV2/9-2YF a rationally designed capsid mutant (affecting surface tyrosines) increased gene transfer efficiency approximately fivefold. Neurons, astrocytes, and oligodendrocytes, but not microglia, were transduced in varying proportions depending on the brain region and the type of capsid. Finally, after a single intracisternal injection of scAAV2/9-2YF using the NFκB-inducible promoter, KA treatment induced transgene expression in the hippocampus and cortex but not in the cerebellum, corresponding to the expression of the CD11b marker of microglial activation. These data support the use of disease-inducible vectors administered in the cisterna magna as a tool to characterize the brain pathology in systemic drug-induced or transgenic disease models. However, further improvements are required to enhance viral particles penetration into the brain.

11.
Hum Gene Ther ; 25(11): 977-87, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25275822

ABSTRACT

Abstract Gene therapy approaches using recombinant adeno-associated virus serotype 2 (rAAV2) and serotype 8 (rAAV8) have achieved significant clinical benefits. The generation of rAAV Reference Standard Materials (RSM) is key to providing points of reference for particle titer, vector genome titer, and infectious titer for gene transfer vectors. Following the example of the rAAV2RSM, here we have generated and characterized a novel RSM based on rAAV serotype 8. The rAAV8RSM was produced using transient transfection, and the purification was based on density gradient ultracentrifugation. The rAAV8RSM was distributed for characterization along with standard assay protocols to 16 laboratories worldwide. Mean titers and 95% confidence intervals were determined for capsid particles (mean, 5.50×10(11) pt/ml; CI, 4.26×10(11) to 6.75×10(11) pt/ml), vector genomes (mean, 5.75×10(11) vg/ml; CI, 3.05×10(11) to 1.09×10(12) vg/ml), and infectious units (mean, 1.26×10(9) IU/ml; CI, 6.46×10(8) to 2.51×10(9) IU/ml). Notably, there was a significant degree of variation between institutions for each assay despite the relatively tight correlation of assay results within an institution. This outcome emphasizes the need to use RSMs to calibrate the titers of rAAV vectors in preclinical and clinical studies at a time when the field is maturing rapidly. The rAAV8RSM has been deposited at the American Type Culture Collection (VR-1816) and is available to the scientific community.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genome, Viral , HEK293 Cells , Humans , Reference Standards , Transformation, Genetic , Virion/genetics , Virus Cultivation/standards
12.
PLoS One ; 8(1): e53156, 2013.
Article in English | MEDLINE | ID: mdl-23301037

ABSTRACT

Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS). This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV)-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF) cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF) was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA)-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.


Subject(s)
Dependovirus/metabolism , Genetic Vectors/metabolism , NF-kappa B/metabolism , Neurons/metabolism , Animals , Cellular Senescence , Central Nervous System/metabolism , Cerebral Cortex/cytology , DNA, Complementary/metabolism , Disease Models, Animal , Gene Transfer Techniques , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Male , Mice , Promoter Regions, Genetic , Rats , Rats, Wistar , Status Epilepticus/metabolism , Transgenes
13.
Hum Gene Ther ; 21(10): 1273-85, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20486768

ABSTRACT

A recombinant adeno-associated virus serotype 2 Reference Standard Material (rAAV2 RSM) has been produced and characterized with the purpose of providing a reference standard for particle titer, vector genome titer, and infectious titer for AAV2 gene transfer vectors. Production and purification of the reference material were carried out by helper virus-free transient transfection and chromatographic purification. The purified bulk material was vialed, confirmed negative for microbial contamination, and then distributed for characterization along with standard assay protocols and assay reagents to 16 laboratories worldwide. Using statistical transformation and modeling of the raw data, mean titers and confidence intervals were determined for capsid particles ({X}, 9.18 x 10¹¹ particles/ml; 95% confidence interval [CI], 7.89 x 10¹¹ to 1.05 x 10¹² particles/ml), vector genomes ({X}, 3.28 x 10¹° vector genomes/ml; 95% CI, 2.70 x 10¹° to 4.75 x 10¹° vector genomes/ml), transducing units ({X}, 5.09 x 108 transducing units/ml; 95% CI, 2.00 x 108 to 9.60 x 108 transducing units/ml), and infectious units ({X}, 4.37 x 109 TCID50 IU/ml; 95% CI, 2.06 x 109 to 9.26 x 109 TCID50 IU/ml). Further analysis confirmed the identity of the reference material as AAV2 and the purity relative to nonvector proteins as greater than 94%. One obvious trend in the quantitative data was the degree of variation between institutions for each assay despite the relatively tight correlation of assay results within an institution. This relatively poor degree of interlaboratory precision and accuracy was apparent even though attempts were made to standardize the assays by providing detailed protocols and common reagents. This is the first time that such variation between laboratories has been thoroughly documented and the findings emphasize the need in the field for universal reference standards. The rAAV2 RSM has been deposited with the American Type Culture Collection and is available to the scientific community to calibrate laboratory-specific internal titer standards. Anticipated uses of the rAAV2 RSM are discussed.


Subject(s)
Dependovirus , Genetic Vectors , Biological Assay , DNA, Viral/chemistry , Dependovirus/classification , Dependovirus/genetics , Dependovirus/isolation & purification , Dependovirus/physiology , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Genetic Vectors/isolation & purification , Genome, Viral , Helper Viruses , Polymerase Chain Reaction , Reference Standards , Transduction, Genetic , Virus Replication
14.
Hum Gene Ther ; 19(11): 1293-305, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19866492

ABSTRACT

The biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for the safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors (recombinant adeno-associated viral vectors pseudotyped with viral capsids from serotype 1) using the tetracycline-inducible (TetON) expression cassette in comparison with the cytomegalovirus (CMV) promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although green fluorescent protein (GFP) was expressed mainly in neurons with both vectors, the relative proportions of DARPP-32-positive projection neurons and parvalbumin-positive interneurons were, respectively, 13:1 and 2:1 for the CMV and TetON vectors. DARP32-positive neurons projecting to the globus pallidus were strongly GFP positive with both vectors, whereas those projecting to the substantia nigra pars reticulata (SNpr) were efficiently labeled by the CMV vector but poorly by the TetON vector. Numerous GFP-positive cells were evidenced in the subventricular zone with both vectors. However, in the olfactory bulb (OB), GFP-positive neurons were observed with the CMV vector but not the TetON vector. We conclude that the absence of significant amounts of transgene product in distant regions (SN and OB) constitutes a safety advantage of the AAV2/1-TetON vector for striatal gene therapy. Midbrain injections resulted in selective GFP expression in tyrosine hydroxylase-positive neurons by the TetON vector whereas with the CMV vector, GFP-positive cells covered a widespread area of the midbrain. The biodistribution of GFP protein corresponded to that of the transcripts and not of the viral genomes. We conclude that the rAAV2/1-TetON vector constitutes an interesting tool for specific transgene expression in midbrain dopaminergic neurons.


Subject(s)
Brain/metabolism , Cytomegalovirus/genetics , Dependovirus/genetics , Gene Expression Regulation/physiology , Genetic Vectors , Promoter Regions, Genetic/genetics , Tetracycline/pharmacology , Animals , Blotting, Western , Brain/drug effects , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Genetic Therapy , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Immunoenzyme Techniques , Neurons/drug effects , Neurons/metabolism , Protein Synthesis Inhibitors/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Transfection , Transgenes
15.
Neurobiol Dis ; 18(1): 206-17, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15649711

ABSTRACT

Minocycline has been shown to be neuroprotective in various models of neurodegenerative diseases. However, its potential in Huntington's disease (HD) models characterized by calpain-dependent degeneration and inflammation has not been investigated. Here, we have tested minocycline in phenotypic models of HD using 3-nitropropionic acid (3NP) intoxication and quinolinic acid (QA) injections. In the 3NP rat model, where the development of striatal lesions involves calpain, we found that minocycline was not protective, although it attenuated the development of inflammation induced after the onset of striatal degeneration. The lack of minocycline activity on calpain-dependent cell death was also confirmed in vitro using primary striatal cells. Conversely, we found that minocycline reduced lesions and inflammation induced by QA. In cultured cells, minocycline protected against mutated huntingtin and staurosporine, stimulations known to promote caspase-dependent cell death. Altogether, these data suggested that, in HD, minocycline may counteract the development of caspase-dependent neurodegeneration, inflammation, but not calpain-dependent neuronal death.


Subject(s)
Huntington Disease/drug therapy , Minocycline/pharmacology , Nerve Degeneration/drug therapy , Nerve Degeneration/prevention & control , Neuroprotective Agents/pharmacology , Animals , Calpain/drug effects , Calpain/metabolism , Caspases/drug effects , Caspases/metabolism , Cell Death/drug effects , Cell Death/physiology , Cells, Cultured , Corpus Striatum/drug effects , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Encephalitis/drug therapy , Encephalitis/physiopathology , Encephalitis/prevention & control , Glutamic Acid/metabolism , Huntingtin Protein , Huntington Disease/metabolism , Huntington Disease/pathology , Male , Minocycline/therapeutic use , Nerve Degeneration/pathology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neuroprotective Agents/therapeutic use , Nitro Compounds , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Phenotype , Propionates , Quinolinic Acid , Rats , Rats, Inbred Lew , Rats, Wistar , Staurosporine/antagonists & inhibitors
16.
Neurobiol Dis ; 17(3): 359-66, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15571972

ABSTRACT

Minocycline, an antibiotic of the tetracycline family, has been shown to display neurorestorative or neuroprotective properties in various models of neurodegenerative diseases. In particular, it has been shown to delay motor alterations, inflammation and apoptosis in models of Huntington's disease, amyotrophic lateral sclerosis and Parkinson's disease. Despite controversies about its efficacy, the relative safety and tolerability of minocycline have led to the launching of various clinical trials. The present review summarizes the available data supporting the clinical testing of minocycline for these neurodegenerative disorders. In addition, we extend our discussion to the potential applications of minocycline for combining this treatment with cellular and molecular therapy.


Subject(s)
Minocycline/therapeutic use , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Animals , Apoptosis , Humans , Huntington Disease/drug therapy , Inflammation , Motor Neuron Disease/drug therapy , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , Parkinson Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL