Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Bioorg Chem ; 150: 107530, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852310

ABSTRACT

The Asp-tRNAAsn/Glu-tRNAGln amidotransferase (GatCAB) has been proposed as a novel antibacterial drug target due to its indispensability in prominent human pathogens. While several inhibitors with in vitro activity have been identified, none have been demonstrated to have potent activity against live bacteria. In this work, seven non-hydrolyzable transition state mimics of GatCAB were synthesized and tested as the transamidase inhibitors against GatCAB from the human pathogen Helicobacter pylori. Notably, the methyl sulfone analog of glutamyl-adenosine significantly reduced GatCAB's transamination rate. Additionally, four lipid-conjugates of these mimics displayed antibacterial activity against Bacillus subtilis, likely due to enhanced cell permeability. Inhibitory activity against GatCAB in live bacteria was confirmed using a sensitive gain-of-function dual luciferase reporter in Mycobacterium bovis-BCG. Only the lipid-conjugated methyl sulfone analog exhibited a significant increase in mistranslation rate, highlighting its cell permeability and inhibitory potential. This study provides insights for developing urgently needed novel antibacterial agents amidst emerging antimicrobial drug resistance.


Subject(s)
Anti-Bacterial Agents , Enzyme Inhibitors , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Bacillus subtilis/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine/chemistry , Adenosine/chemical synthesis , Helicobacter pylori/drug effects , Helicobacter pylori/enzymology , Nitrogenous Group Transferases/antagonists & inhibitors , Nitrogenous Group Transferases/metabolism , Humans
2.
Org Biomol Chem ; 21(7): 1501-1513, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36688538

ABSTRACT

Alkylphenylacetylene derivatives were synthesized and used as reactants in the Larock heteroannulation reaction to investigate the steric influence on regioselectivity. Large alkyl groups preferentially yielded 2-alkyl-3-phenylindole products, while smaller alkyl groups provided 3-alkyl-2-phenylindole as major products. The logarithm of regioisomeric product ratios exhibited good correlations with various steric parameters. Notably, the Charton values provided the best correlation when excluding the cyclopropyl group. In addition, the Boltzmann-weighted Sterimol parameter (wSterimol) was utilized to generate a good predictive model, indicating the B1 wSterimol as the significant regiochemical determining parameter with no obvious deviation for the cyclopropyl group. Relative atomic distances within the DFT-optimized transition state structures revealed good correlations with the logarithm of regioisomeric ratios. Furthermore, the cyclopropyl adsorption complex indicated electronic contribution, explaining the peculiar behavior of this substituent in the experimental observation.

3.
J Org Chem ; 87(2): 1218-1229, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34989564

ABSTRACT

Substituted 2-iodoaniline derivatives were prepared and utilized as reactants, along with asymmetric diarylacetylenes, to synthesize a series of 6-substituted-2,3-diarylindole derivatives via the Larock heteroannulation reaction. Electron-donating substituents on the 2-iodoaniline derivatives retarded the reaction, while electron-withdrawing substituents provided a complete conversion to the indole products. In addition, the electronic properties of the substituted 2-iodoaniline reactants displayed no influence toward regioselectivity. On the contrary, the electronic effect from unsymmetrical diarylacetylenes significantly influenced the regiochemical outcome of the reaction. Density functional theory calculations of the oxidative addition and carbopalladation steps revealed the electronic influences of the substituted 2-iodoaniline derivatives toward the overall rate of the reaction. In contrast, the electronic properties of the asymmetric diarylacetylene remained the critical product-determining factor of regioselectivity.


Subject(s)
Electronics , Electrons , Oxidative Stress
4.
Inorg Chem ; 61(20): 7945-7963, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35537466

ABSTRACT

Two series of titanium complexes, including salicylbenzoxazole titanium complexes (1-4) and salicylbenzothiazole titanium complexes (5-8), were successfully synthesized and characterized by NMR spectroscopy, elemental analysis, and X-ray diffraction crystallography (for 2 and 5). The 1H NMR spectra of complexes 7 and 8 reveal fluxional behavior in solution at room temperature, and the activation parameters were determined by lineshape analysis of variable-temperature (VT) NMR spectra in toluene-d8: for 7, ΔH⧧ = 73.0 ± 1.8 kJ mol-1, ΔS⧧ = 22.1 ± 5.5 J mol-1 K-1; for 8, ΔH⧧ = 73.7 ± 1.2 kJ mol-1, ΔS⧧ = 20.3 ± 3.8 J mol-1 K-1. The positive values of ΔS⧧ suggested that the isomerization occurred via a dissociative mechanism. All complexes were active initiators for the ring-opening polymerization of ε-caprolactone (ε-CL) and three substituted ε-CLs: γ-methyl-ε-caprolactone (γMeCL), γ-ethyl-ε-caprolactone (γEtCL), and γ-phenyl-ε-caprolactone (γPhCL). Of all complexes, complex 5 was found to be the most active initiator in this study. The copolymerizations between ε-CL and three substituted ε-CLs produced completely random copolymers. The polymerization was proposed to proceed via a dissociative coordination-insertion mechanism. The catalytic activity of the salicylbenzoxazole titanium complex was lower than that of its closely related salicylbenzothiazole titanium congener. Additionally, DFT calculations unveiled that the ligand decoordination step and the less steric congestion at the titanium center in the salicylbenzothiazole titanium complexes were the key factors in enhancing the catalytic rate.


Subject(s)
Caproates , Titanium , Caproates/chemistry , Lactones , Ligands , Polymerization , Titanium/chemistry
5.
Proteins ; 88(9): 1133-1142, 2020 09.
Article in English | MEDLINE | ID: mdl-32067260

ABSTRACT

The nondiscriminating aspartyl-tRNA synthetase (ND-AspRS), found in many archaea and bacteria, covalently attaches aspartic acid to tRNAAsp and tRNAAsn generating a correctly charged Asp-tRNAAsp and an erroneous Asp-tRNAAsn . This relaxed tRNA specificity is governed by interactions between the tRNA and the enzyme. In an effort to assess the contributions of the anticodon-binding domain to tRNA specificity, we constructed two chimeric enzymes, Chimera-D and Chimera-N, by replacing the native anticodon-binding domain in the Helicobacter pylori ND-AspRS with that of a discriminating AspRS (Chimera-D) and an asparaginyl-tRNA synthetase (AsnRS, Chimera-N), both from Escherichia coli. Both chimeric enzymes showed similar secondary structure compared to wild-type (WT) ND-AspRS and maintained the ability to form dimeric complexes in solution. Although less catalytically active than WT, Chimera-D was more discriminating as it aspartylated tRNAAsp over tRNAAsn with a specificity ratio of 7.0 compared to 2.9 for the WT enzyme. In contrast, Chimera-N exhibited low catalytic activity toward tRNAAsp and was unable to aspartylate tRNAAsn . The observed catalytic activities for the two chimeras correlate with their heterologous toxicity when expressed in E. coli. Molecular dynamics simulations show a reduced hydrogen bond network at the interface between the anticodon-binding domain and the catalytic domain in Chimera-N compared to Chimera-D or WT, explaining its lower stability and catalytic activity.


Subject(s)
Anticodon , Aspartate-tRNA Ligase/metabolism , Escherichia coli/enzymology , Helicobacter pylori/enzymology , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Asn/metabolism , RNA, Transfer, Asp/metabolism , Amino Acid Sequence , Aspartate-tRNA Ligase/chemistry , Aspartate-tRNA Ligase/genetics , Binding Sites , Biocatalysis , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Helicobacter pylori/genetics , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Asn/chemistry , RNA, Transfer, Asp/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
6.
Bioorg Med Chem Lett ; 30(1): 126777, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31699611

ABSTRACT

The anticancer potential of a synthetic 2,3-diarylindole (PCNT13) has been demonstrated in A549 lung cancer cells by inducing both apoptosis and autophagic cell death. In this report, we designed to connect a fluorophore to the compound via a hydrophilic linker for monitoring intracellular localization. The best position for linker attachment was identified from cytotoxicity and effect on cell morphology of newly synthesized PCNT13 derivatives bearing hydrophilic linker. Cytotoxicity and effect on cell morphology related to the parental compound were used to identify the optimum position for linker attachment in the PCNT13 chemical structure. The fluorophore-PCNT13 conjugate was found to localize in the cytoplasm. Microtubules were found to be one of the cytosolic target proteins of PCNT13, as the compound could inhibit tubulin polymerization in vitro. A molecular docking study revealed that PCNT13 binds at the colchicine binding site on the α/ß-tubulin heterodimer. The effect of PCNT13 on microtubule dynamics caused cell cycle arrest in the G2/M phase as analyzed by flow cytometric analysis.


Subject(s)
Indoles/pharmacology , Lung Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Indoles/chemistry , Lung Neoplasms/genetics , Lung Neoplasms/pathology , M Phase Cell Cycle Checkpoints/drug effects , Microtubules/drug effects , Models, Molecular , Tubulin/chemistry , Tubulin/metabolism
7.
Protein Expr Purif ; 150: 72-80, 2018 10.
Article in English | MEDLINE | ID: mdl-29793031

ABSTRACT

Citrus Huanglongbing (HLB) or citrus greening is one of the most destructive diseases affecting citrus industry worldwide. The causal agent in Asia is a phloem-limited, Gram-negative bacterium, 'Candidatus Liberibacter asiaticus' (CLas). Within the genome of CLas lies prophage regions, classified as Type-A, B, C, and D. In particular, Type-D has been indicated to correlate with the blotchy-mottle symptoms of citrus trees. Here we reported the cloning, overexpression, and purification of the ORF1, an open reading frame from the partial Type-D region of CLas obtained from an infected lime tree (Citrus aurantifolia Swingle). Overexpression of the ORF1 was toxic to the E. coli BL21(DE3), and the transient expression of ORF1 in Arabidopsis seedlings by Agrobacterium-mediated transformation exhibited rapid and total chlorosis of the seedlings within two days post-transformation. The native-PAGE of the purified protein showed multiple bands, indicative of various conformations in solution. The ESI-TOF mass spectrum confirmed the molecular weight of the purified ORF1 to be 15,364.3150 Da, corresponding to the [M+1]+ of the ORF1 without an N-terminal methionine. The protein predominantly consisted of α-helix as evidenced by circular dichroism (CD), and the transition toward random coil structure upon heating was reversible. The template-based modeling (I-TASSER) of the ORF1 indicated eight α-helices connected through variable loops. The simulated CD spectrum, generated from the atomic coordinates of the I-TASSER model, was notably similar to the experimental spectrum. Our report offers the basis for understanding the contributions of genes within Type-D prophage region toward the disease pathogenicity of citrus HLB.


Subject(s)
Bacterial Proteins , Citrus/microbiology , Cloning, Molecular , Gene Expression , Genetic Loci , Gram-Negative Bacteria/genetics , Plant Diseases/microbiology , Prophages/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Gram-Negative Bacteria/metabolism , Gram-Negative Bacteria/virology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
8.
Bioorg Med Chem Lett ; 26(9): 2119-23, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27032333

ABSTRACT

A series of 2,3-diarylindoles were synthesized via the Larock heteroannulation, and evaluated for their anticancer activity against A549 lung cancer cells. The most potent compound, PCNT13 with IC50=5.17 µM, caused the induction of two modes of programmed cell death, apoptosis and autophagy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Indoles/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Macrolides/pharmacology , Structure-Activity Relationship
9.
Antonie Van Leeuwenhoek ; 109(3): 379-88, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26715388

ABSTRACT

Streptomyces venezuelae ATCC 10712 produces chloramphenicol in small amounts. To enhance chloramphenicol production, two genes, aroB and aroK, encoding rate-limiting enzymes of the shikimate pathway were overexpressed using the expression vector pIJ86 under the control of the strong constitutive ermE* promoter. The recombinant strains, S. venezuelae/pIJ86-aroB and S. venezuelae/pIJ86-aroK, produced 2.5- and 4.3-fold greater amounts respectively of chloramphenicol than wild type at early stationary phase of growth. High transcriptional levels of aroB and aroK genes were detected at the early exponential growth of both recombinant strains and consistent with the enhanced expression of pabB gene encoding an early enzyme in chloramphenicol biosynthesis. The results suggested that the increment of carbon flux was directed towards intermediates in the shikimate pathway required for the production of chorismic acid, and consequently resulted in the enhancement of chloramphenicol production. This work is the first report of a convenient genetic approach to manipulate primary metabolite genes in S. venezuelae in order to increase chloramphenicol production.


Subject(s)
Chloramphenicol/biosynthesis , Gene Expression , Phosphotransferases (Alcohol Group Acceptor)/genetics , Shikimic Acid/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Catalysis , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Metabolic Networks and Pathways , Transcription, Genetic
10.
J Biol Chem ; 288(6): 3816-22, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23258533

ABSTRACT

Many bacteria lack genes encoding asparaginyl- and/or glutaminyl-tRNA synthetase and consequently rely on an indirect path for the synthesis of both Asn-tRNA(Asn) and Gln-tRNA(Gln). In some bacteria such as Thermus thermophilus, efficient delivery of misacylated tRNA to the downstream amidotransferase (AdT) is ensured by formation of a stable, tRNA-dependent macromolecular complex called the Asn-transamidosome. This complex enables direct delivery of Asp-tRNA(Asn) from the non-discriminating aspartyl-tRNA synthetase to AdT, where it is converted into Asn-tRNA(Asn). Previous characterization of the analogous Helicobacter pylori Asn-transamidosome revealed that it is dynamic and cannot be stably isolated, suggesting the possibility of an alternative mechanism to facilitate assembly of a stable complex. We have identified a novel protein partner called Hp0100 as a component of a stable, tRNA-independent H. pylori Asn-transamidosome; this complex contains a non-discriminating aspartyl-tRNA synthetase, AdT, and Hp0100 but does not require tRNA(Asn) for assembly. Hp0100 also enhances the capacity of AdT to convert Asp-tRNA(Asn) into Asn-tRNA(Asn) by ∼35-fold. Our results demonstrate that bacteria have adopted multiple divergent methods for transamidosome assembly and function.


Subject(s)
Amidinotransferases/metabolism , Bacterial Proteins/metabolism , Helicobacter pylori/enzymology , Multienzyme Complexes/metabolism , RNA, Bacterial/metabolism , RNA, Transfer, Amino Acyl/metabolism , Amidinotransferases/genetics , Bacterial Proteins/genetics , Helicobacter pylori/genetics , Multienzyme Complexes/genetics , RNA, Bacterial/genetics , RNA, Transfer, Amino Acyl/genetics
11.
Fitoterapia ; 173: 105781, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38128619

ABSTRACT

Six anthraquinones were isolated from Morinda scabrida Craib, an unexplored species of Morinda found in the tropical forest of Thailand. All six anthraquinones showed cytotoxicity against A549 lung cancer cells, with the most active compound, nordamnacanthal (MS01), exhibiting the IC50 value of 16.3 ± 2.5 µM. The cytotoxic effect was dose-dependent and led to cell morphological changes characteristic of apoptosis. In addition, flow cytometric analysis showed dose-dependent apoptosis induction and the G2/M phase cell cycle arrest, which was in agreement with the tubulin polymerization inhibitory activity of MS01. Molecular docking analysis illustrated the binding between MS01 and the α/ß-tubulin heterodimer at the colchicine binding site, and UV-visible absorption spectroscopy revealed the DNA binding capacity of MS01.


Subject(s)
Lung Neoplasms , Morinda , Humans , Molecular Structure , Morinda/chemistry , Cell Proliferation , Cell Line, Tumor , Polymerization , Lung Neoplasms/drug therapy , Molecular Docking Simulation , Tubulin/chemistry , Tubulin/metabolism , Anthraquinones/pharmacology , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Tubulin Modulators/metabolism
12.
Chem Asian J ; 19(6): e202301081, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377056

ABSTRACT

A series of novel styryl dye derivatives incorporating indolium and quinolinium core structures were successfully synthesized to explore their interacting and binding capabilities with tau aggregates in vitro and in cells. The synthesized dyes exhibited enhanced fluorescence emission in viscous environments due to the rotatable bond confinement in the core structure. Dye 4, containing a quinolinium moeity and featuring two cationic sites, demonstrated a 28-fold increase in fluorescence emission upon binding to tau aggregates. This dye could also stain tau aggregates in living cells, confirmed by cell imaging using confocal fluorescence microscopy. A molecular docking study was conducted to provide additional visualization and support for binding interactions. This work offers novel and non-cytotoxic fluorescent probes with desirable photophysical properties, which could potentially be used for studying tau aggregates in living cells, prompting further development of new fluorescent probes for early Alzheimer's disease detection.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Molecular Docking Simulation , Microscopy, Fluorescence
13.
Protein Expr Purif ; 89(1): 25-32, 2013 May.
Article in English | MEDLINE | ID: mdl-23454362

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) covalently attach an amino acid to its cognate tRNA isoacceptors through an ester bond. The standard set of 20 amino acids implies 20 aaRSs for each pair of amino acid/tRNA isoacceptors. However, the genomes of all archaea and some bacteria do not encode for a complete set of 20 aaRSs. For the human pathogenic bacterium Helicobacter pylori, a gene encoding asparaginyl-tRNA synthetase (AsnRS) is absent whilst an aspartyl-tRNA synthetase (AspRS) aminoacylates both tRNA(Asp) and tRNA(Asn) with aspartate. The structural and functional basis for this non-discriminatory behavior is not well understood. Here we report the over-production of the N-terminal anticodon-binding domain of H. pylori ND-AspRS using Escherichia coli BL21(DE3) host cells. Prolonged expression of this protein resulted in a toxic phenotype, limiting the expression period to just 30min. Purified protein was monomeric in solution by gel filtration chromatography and stable up to 42°C as observed in temperature-dependent dynamic light scattering measurements. Circular dichroism indicated a mixture of α-helix and ß-sheet secondary structure at 20°C and predominantly ß-sheet at 70°C. Optimized crystallization conditions at pH 5.6 with PEG 4000 as a co-precipitant produced well-formed crystals and (1)H NMR spectrum showed a well dispersed chemical shift envelope characteristic of a folded protein.


Subject(s)
Aspartate-tRNA Ligase/isolation & purification , Helicobacter Infections/enzymology , Helicobacter pylori/enzymology , RNA-Binding Proteins/isolation & purification , Amino Acid Sequence , Anticodon , Aspartate-tRNA Ligase/chemistry , Binding Sites , Humans , Magnetic Resonance Spectroscopy , Protein Conformation , Protein Folding , Protein Structure, Secondary , RNA, Transfer/chemistry , RNA-Binding Proteins/chemistry
14.
J Org Chem ; 78(24): 12703-9, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24279463

ABSTRACT

A series of 2,3-diarylindoles were synthesized from 2-iodoaniline and unsymmetrical diarylacetylenes using the Larock heteroannulation. Diarylacetylenes bearing electron-withdrawing substituents lead to 2,3-diarylindoles with substituted phenyl moieties at the 2-position as major products, while those with electron-donating groups preferably yield indole products with substituted phenyl moieties at the 3-position. The regioisomeric product ratios exhibit a clear correlation with Hammett σ(p) values. DFT calculations reveal the origin of this effect, displaying smaller activation energy barriers for those pathways leading to the major regioisomer.


Subject(s)
Alkynes/chemistry , Indoles/chemical synthesis , Aniline Compounds/chemistry , Electrons , Indoles/chemistry , Models, Molecular , Molecular Structure , Quantum Theory , Stereoisomerism
15.
Nat Prod Res ; 37(13): 2181-2188, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35142570

ABSTRACT

Monascus fermented rice, also known as red yeast rice, exhibits a broad spectrum of biological activities due to its chemical constituents, such as monacolins and azaphilone pigments. Here, we cultured Monascus kaoliang KB9 in a liquid malt medium instead of on rice as a carbon source. Eleven known compounds (1-11) containing azaphilones and their early intermediate were isolated and identified. However, this was the first time that angular tricyclic azaphilones, monasfluols A (4) and B (7), acetyl-monasfluol A (5) and monasfluore A (6), were isolated from this species. Interestingly, all isolated tricyclic azaphilones existed exclusively in enol form in CD3OD, as evidenced by NMR spectroscopy. The absolute configuration of compounds 4-7 was also first experimentally identified based on ECD spectroscopy combined with conformational analyses using computational techniques. The assigned stereochemistry of Monascus azaphilones in this work provides essential structural information that will benefit future biological and pharmaceutical investigations.


Subject(s)
Monascus , Monascus/chemistry , Solvents , Benzopyrans/pharmacology , Benzopyrans/chemistry , Pigments, Biological/chemistry
16.
ChemMedChem ; 17(14): e202200127, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35595678

ABSTRACT

A collection of 2,3-arylpyridylindole derivatives were synthesized via the Larock heteroannulation and evaluated for their in vitro cytotoxic activity against A549 human lung cancer cells. Two derivatives expressed good cytotoxicity with IC50 values of 1.18±0.25 µM and 0.87±0.10 µM and inhibited tubulin polymerization in vitro, with molecular docking studies suggesting the binding modes of the compounds in the colchicine binding site. Both derivatives have biphasic cell cycle arrest effects depending on their concentrations. At a lower concentration (0.5 µM), the two compounds induced G0/G1 cell cycle arrest by activating the JNK/p53/p21 pathway. At a higher concentration (2.0 µM), the two derivatives arrested the cell cycle at the G2/M phase via Akt signaling and inhibition of tubulin polymerization. Additional cytotoxic mechanisms of the two compounds involved the decreased expression of Bcl-2 and Mcl-1 antiapoptotic proteins through inhibition of the STAT3 and Akt signaling pathways.


Subject(s)
Antineoplastic Agents , Indoles/pharmacology , Lung Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , G2 Phase Cell Cycle Checkpoints , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt , Tubulin/metabolism
17.
Dalton Trans ; 50(31): 10964-10981, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34318841

ABSTRACT

A series of six-coordinate titanium complexes 1-6 supported by pyrrolylaldiminate ligands were prepared via the reaction of 2 equivalents of ligands and Ti(OiPr)4 in toluene at 70 °C. The X-ray structure of 2 revealed that the two ligands were κ2-coordinated to the titanium center with the two pyrrole nitrogen atoms in trans positions and the two imine nitrogen atoms in cis positions. All complexes were active initiators for the ring-opening polymerization (ROP) of rac-lactide (rac-LA), ε-caprolactone (ε-CL), and three substituted ε-caprolactones (γ-methyl-ε-caprolactone (γMeCL), γ-ethyl-ε-caprolactone (γEtCL), and γ-phenyl-ε-caprolactone (γPhCL)). Polymerizations of all monomers were well controlled, affording predetermined molar masses and narrow dispersity values. Complex 5 exhibited the highest polymerization activities with rac-LA and ε-CL and its performance was comparable to other highly active six-coordinate titanium complexes reported thus far. Kinetic results revealed a first-order dependency on the monomer concentration, and the rate of polymerization was greatly influenced by the substituent on the imine nitrogen. End-group analysis of the isolated PLA and PCL suggested a coordination-insertion mechanism.

18.
Biochemistry ; 47(29): 7610-6, 2008 Jul 22.
Article in English | MEDLINE | ID: mdl-18627126

ABSTRACT

Elongation factor Tu (EF-Tu) binds and loads elongating aminoacyl-tRNAs (aa-tRNAs) onto the ribosome for protein biosynthesis. Many bacteria biosynthesize Gln-tRNA (Gln) and Asn-tRNA (Asn) by an indirect, two-step pathway that relies on the misacylated tRNAs Glu-tRNA (Gln) and Asp-tRNA (Asn) as intermediates. Previous thermodynamic and experimental analyses have demonstrated that Thermus thermophilus EF-Tu does not bind Asp-tRNA (Asn) and predicted a similar discriminatory response against Glu-tRNA (Gln) [Asahara, H., and Uhlenbeck, O. (2005) Biochemistry 46, 6194-6200; Roy, H., et al. (2007) Nucleic Acids Res. 35, 3420-3430]. By discriminating against these misacylated tRNAS, EF-Tu plays a direct role in preventing misincorporation of aspartate and glutamate into proteins at asparagine and glutamine codons. Here we report the characterization of two different mesophilic EF-Tu orthologs, one from Escherichia coli, a bacterium that does not utilize either Glu-tRNA (Gln) or Asp-tRNA (Asn), and the second from Helicobacter pylori, an organism in which both misacylated tRNAs are essential. Both EF-Tu orthologs discriminate against these misacylated tRNAs, confirming the prediction that Glu-tRNA (Gln), like Asp-tRNA (Asn), will not form a complex with EF-Tu. These results also demonstrate that the capacity of EF-Tu to discriminate against both of these aminoacyl-tRNAs is conserved even in bacteria like E. coli that do not generate either misacylated tRNA.


Subject(s)
Bacterial Proteins/metabolism , Peptide Elongation Factor Tu/metabolism , RNA, Transfer, Amino Acyl/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Hydrolysis , Kinetics , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/genetics , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Asn/chemistry , RNA, Transfer, Asn/metabolism
19.
J Mol Biol ; 366(2): 461-8, 2007 Feb 16.
Article in English | MEDLINE | ID: mdl-17174333

ABSTRACT

Outer membrane phospholipase A (OMPLA) is a unique, integral membrane enzyme found in Gram-negative bacteria and is an important virulence factor for pathogens such as Helicobacter pylori. This broad-specificity lipase degrades a variety of lipid substrates, and it plays a direct role in adjusting the composition and permeability of bacterial membranes under conditions of stress. Interestingly, OMPLA shows little preference for the lipid headgroup and, instead, the length of the hydrophobic acyl chain is the strongest determinant for substrate selection by OMPLA, with the enzyme strongly preferring substrates with chains equal to or longer than 14 carbon atoms. The question remains as to how a hydrophobic protein like OMPLA can achieve this specificity, particularly when the shorter chains can be accommodated in the binding pocket. Using a series of sulfonyl fluoride inhibitors with various lengths of acyl chain, we show here that the thermodynamics of substrate-induced OMPLA dimerization are guided by the acyl chain length, demonstrating that OMPLA uses a unique biophysical mechanism to select its phospholipid substrate.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Phospholipases A/metabolism , Sulfinic Acids/pharmacology , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Binding Sites , Catalysis , Enzyme Activation , Hydrophobic and Hydrophilic Interactions , Lipids , Molecular Structure , Phospholipases A/antagonists & inhibitors , Phospholipases A1 , Protein Structure, Quaternary , Protein Structure, Tertiary , Structure-Activity Relationship , Substrate Specificity , Sulfinic Acids/chemistry
20.
J Mol Biol ; 358(1): 120-31, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16497324

ABSTRACT

Outer membrane phospholipase A (OMPLA) is a widely conserved transmembrane enzyme found in Gram-negative bacteria, and it is implicated in the virulence of a number of pathogenic organisms. The regulation of the protein's phospholipase activity is not well understood despite the existence of a number of high resolution structures. Previous biochemical studies have demonstrated that dimerization of OMPLA is a prerequisite for its phospholipase activity, and it has been shown in vitro that this dimerization is dependent on calcium and substrate binding. Therefore, to fully understand the regulation of OMPLA, it is necessary to understand the stability of the protein dimer and the extent to which it is influenced by its effector molecules. We have used sedimentation equilibrium analytical ultracentrifugation to dissect the energetics of Escherichia coli OMPLA dimerization in detergent micelles. We find that calcium contributes relatively little stability to the dimer, while interactions with the substrate acyl chain are the predominant force in stabilizing the dimeric conformation of the enzyme. The resulting thermodynamic cycle suggests that interactions between effector molecules are additive. These energetic measurements not only provide insight into the activation of OMPLA, but they also represent the first quantitative investigation of the association energetics of a transmembrane beta-barrel. This thermodynamic study allows us to begin to address the differences between protein-protein interfaces in transmembrane proteins with a helical fold to those of a beta-barrel fold and to more fully understand the forces involved in membrane protein interactions.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli/enzymology , Phospholipases A/chemistry , Phospholipases A/metabolism , Thermodynamics , Binding Sites , Calcium/metabolism , Catalysis , Detergents/pharmacology , Dimerization , Magnesium/metabolism , Models, Molecular , Phospholipases A1 , Protein Structure, Quaternary , Sulfones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL