Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203833

ABSTRACT

The gut microbiome is well known for its influence on human physiology and aging. Therefore, we speculate that the gut microbiome may affect muscle strength in the same way as the host's own genes. To demonstrate candidates for gut microbes affecting muscle strength, we remodeled the original gut microbiome of mice into human intestinal microbiome through fecal microbiome transplantation (FMT), using human feces and compared the changes in muscle strength in the same mice before and three months after FMT. After comparing before and after FMT, the mice were divided into three groups based on the observed changes in muscle strength: positive, none, and negative changes in muscle strength. As a result of analyzing the α-diversity, Ɵ-diversity, and co-occurrence network of the intestinal microbial community before and after FMT, it was observed that a more diverse intestinal microbial community was established after FMT in all groups. In particular, the group with increased muscle strength had more gut microbiome species and communities than the other groups. Fold-change comparison showed that Eisenbergiella massiliensis and Anaeroplasma abactoclasticum from the gut microbiome had positive contributions to muscle strength, while Ileibacterium valens and Ethanoligenens harbinense had negative effects. This study identifies candidates for the gut microbiome that contribute positively and those that contribute negatively to muscle strength.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Animals , Mice , Fecal Microbiota Transplantation , Feces , Muscle Strength
2.
Int J Mol Sci ; 24(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37511151

ABSTRACT

Given the impact of the gut microbiome on human physiology and aging, it is possible that the gut microbiome may affect locomotion in the same way as the host's own genes. There is not yet any direct evidence linking the gut microbiome to locomotion, though there are some potential connections, such as regular physical activity and the immune system. In this study, we demonstrate that the gut microbiome can contribute differently to locomotion. We remodeled the original gut microbiome of mice through fecal microbiota transplantation (FMT) using human feces and compared the changes in locomotion of the same mice before and three months after FMT. We found that FMT affected locomotion in three different ways: positive, none (the same), and negative. Analysis of the phylogenesis, α-diversities, and Ɵ-diversities of the gut microbiome in the three groups showed that a more diverse group of intestinal microbes was established after FMT in each of the three groups, indicating that the human gut microbiome is more diverse than that of mice. The FMT-remodeled gut microbiome in each group was also different from each other. Fold change and linear correlation analyses identified Lacrimispora indolis, Pseudoflavonifractor phocaeensis, and Alistipes senegalensis in the gut microbiome as positive contributors to locomotion, while Sphingobacterium cibi, Prevotellamassilia timonensis, Parasutterella excrementihominis, Faecalibaculum rodentium, and Muribaculum intestinale were found to have negative effects. This study not only confirms the presence of gut microbiomes that contribute differently to locomotion, but also explains the mixed results in research on the association between the gut microbiome and locomotion.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Animals , Mice , Fecal Microbiota Transplantation , Feces/microbiology , Gastrointestinal Microbiome/physiology , Locomotion
3.
Int J Mol Sci ; 24(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36902006

ABSTRACT

Oral squamous cell carcinoma (OSCC) accounts for about 90% of all head and neck cancers, the prognosis is very poor, and there are no effective targeted therapies. Herein, we isolated Machilin D (Mach), a lignin, from the roots of Saururus chinensis (S. chinensis) and assessed its inhibitory effects on OSCC. Herein, Mach had significant cytotoxicity against human OSCC cells and showed inhibitory effects against cell adhesion, migration, and invasion by inhibiting adhesion molecules, including the FAK/Src pathway. Mach suppressed the PI3K/AKT/mTOR/p70S6K pathway and MAPKs, leading to apoptotic cell death. We investigated other modes of programmed cell death in these cells and found that Mach increased LC3I/II and Beclin1 and decreased p62, leading to autophagosomes, and suppressed the necroptosis-regulatory proteins RIP1 and MLKL. Our findings provide evidence that the inhibitory effects of Mach against human YD-10B OSCC cells are related to the promotion of apoptosis and autophagy and inhibition of necroptosis and are mediated via focal adhesion molecules.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Phosphatidylinositol 3-Kinases , Necroptosis , Mouth Neoplasms/pathology , Apoptosis , Autophagy/physiology , Cell Line, Tumor , Cell Proliferation
4.
Molecules ; 28(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37764349

ABSTRACT

For thousands of years, medicinal plants have played a pivotal role in maintaining human health and improving the quality of human life. This study was designed to analyze the analgesic, anti-inflammatory, and antibacterial potentials of a hydro-methanolic extract of Cucurbita moschata flowers, along with qualitative and quantitative phytochemical screening. The anti-inflammatory effect was tested using the in vitro membrane stabilizing method for human red blood cells (HRBC), the analgesic effect was tested using the in vivo acetic acid-induced writing method, and the antibacterial effect was tested using the disc diffusion method. In silico ADME/T and molecular docking studies were performed to assess the potential of the stated phytochemicals against Cyclooxygenase-II enzyme. Phytochemical screening confirmed the presence of flavonoids, alkaloids, glycosides, tannins, and carbohydrates. The flower extract demonstrated the maximum protection of human red blood cells at 1000 Āµg/mL, with a 65.73% reduction in hemolysis in a hypotonic solution. The extract also showed significant (p < 0.05) and dose-dependent analgesic effects at oral doses of 200 and 400 mg/kg on the tested animals. Furthermore, the flower extract exhibited potent antibacterial activity due to the disc diffusion method, which was compared with standard ciprofloxacin. In silico testing revealed that 42 phytochemicals exhibited notable pharmacokinetic properties and passed drug likeness screening tests. Among the six best-selected compounds, 3,4-dihydro-2H-pyran-2-yl)methanamine showed the highest binding affinity (-10.1) with significant non-bonding interactions with the target enzyme. In conclusion, the hydro-methanolic extract of Cucurbita moschata was found to be rich in various phytochemicals that may be associated with therapeutic potential, and this study supports the traditional use of Cucurbita moschata flowers in the management of inflammation and painful conditions.


Subject(s)
Cucurbita , Animals , Humans , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Analgesics/pharmacology , Flowers , Plant Extracts/pharmacology
5.
Molecules ; 27(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35684412

ABSTRACT

Gynura nepalensis D.C. (family: Asteraceae) has abundant uses in the alternative medicinal practice, and this species is commonly used in the treatment of diabetes, rheumatism, cuts or wounds, asthma, kidney stones, cough, urinary tract bleeding, gall bladder stones, hepatitis, diarrhea, hemorrhoids, constipation, vomiting, fertility problems, blood poisoning, septicemia, skin allergy, indigestion, high cholesterol levels, and so on. This study aims to investigate the hepatoprotective and antioxidant potential of the methanol extract of the Gynura nepalensis D.C. (GNME) along with chemical profiling with phytochemical screening. Moreover, prospective phytocompounds have been screened virtually to present the binding affinity of the bioactive components to the hepatic and oxidative receptors. In the hepatoprotective study, alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein (TP), and lipid peroxidation (LP) and total bilirubin (TB) have been assessed, and in the antioxidant study, the DPPH free radical scavenging, total antioxidant flavonoid, and phenolic contents were determined. Moreover, the molecular binding affinity of the bioactive component of the plant has been analyzed using PyRx AutoDock Vina, Chimera, and Discovery Studio software. The plant extract showed dose-dependent hepatoprotective potential (p < 0.05, 0.01, 0.001) as well as strong antioxidant properties. Moreover, hepatoprotective and antioxidant molecular docking studies revealed a result varying from −2.90 kcal/mol to −10.1 kcal/mol. 4,5-dicaffeoylquinic acid and chlorogenic acid revealed the highest binding affinity among the selected molecules. However, the plant showed portent antioxidant and hepatoprotective properties in the in vitro, in vivo, and in silico models, and it is presumed that the hepatoprotective properties of the plant extract have occurred due to the presence of the vast bioactive chemical compounds as well as their antioxidant properties. Therefore, advanced studies are recommended to elucidate the pharmacological properties of the plant extracts.


Subject(s)
Asteraceae , Chemical and Drug Induced Liver Injury , Antioxidants/chemistry , Chemical and Drug Induced Liver Injury/metabolism , Computers , Liver , Methanol/pharmacology , Molecular Docking Simulation , Plant Extracts/chemistry , Prospective Studies
6.
BMC Microbiol ; 21(1): 44, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579191

ABSTRACT

BACKGROUND: The proliferation and survival of microbial organisms including intestinal microbes are determined by their surrounding environments. Contrary to popular myth, the nutritional and chemical compositions, water contents, O2 contents, temperatures, and pH in the gastrointestinal (GI) tract of a human are very different in a location-specific manner, implying heterogeneity of the microbial composition in a location-specific manner. RESULTS: We first investigated the environmental conditions at 6 different locations along the GI tract and feces of ten weeks' old male SPF C57BL/6 mice. As previously known, the pH and water contents of the GI contents at the different locations of the GI tract were very different from each other in a location-specific manner, and none of which were not even similar to those of feces. After confirming the heterogeneous nature of the GI contents in specific locations and feces, we thoroughly analyzed the composition of the microbiome of the GI contents and feces. 16S rDNA-based metagenome sequencing on the GI contents and feces showed the presence of 13 different phyla. The abundance of Firmicutes gradually decreased from the stomach to feces while the abundance of Bacteroidetes gradually increased. The taxonomic α-diversities measured by ACE (Abundance-based Coverage Estimator) richness, Shannon diversity, and Fisher's alpha all indicated that the diversities of gut microbiome at colon and cecum were much higher than that of feces. The diversities of microbiome compositions were lowest in jejunum and ileum while highest in cecum and colon. Interestingly, the diversities of the fecal microbiome were lower than those of the cecum and colon. Beta diversity analyses by NMDS plots, PCA, and unsupervised hierarchical clustering all showed that the microbiome compositions were very diverse in a location-specific manner. Direct comparison of the fecal microbiome with the microbiome of the whole GI tracts by α-and Ɵ-diversities showed that the fecal microbiome did not represent the microbiome of the whole GI tract. CONCLUSION: The fecal microbiome is different from the whole microbiome of the GI tract, contrary to a baseline assumption of contemporary microbiome research work.


Subject(s)
Bacteria/genetics , Biodiversity , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/microbiology , Metagenome , Animals , Bacteria/classification , Bacteria/metabolism , Bacterial Physiological Phenomena , Cecum/microbiology , Colon/microbiology , Feces/microbiology , Hydrogen-Ion Concentration , Ileum/microbiology , Jejunum/microbiology , Male , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Stomach/microbiology
7.
Neurobiol Dis ; 136: 104706, 2020 03.
Article in English | MEDLINE | ID: mdl-31837423

ABSTRACT

The main pathological hallmark of Parkinson's disease (PD) is the presence of Lewy bodies, which mainly consist of aggregated α-synuclein. Based on the neurotoxicity of oligomeric α-synuclein and its significance in the aetiology of PD, there has been decades of effort to elucidate an enzyme specifically degrading oligomeric α-synuclein. Here we report an enzyme, Omi, which specifically recognizes and precisely degrades oligomeric α-synuclein but not monomeric α-synuclein. After enzymatic and functional analyses of Omi in in vitro, we developed an in vivo assay system of dual gene interaction in Drosophila to investigate further the etiological role of Omi in PD. Pan-neuronal expression of Omi rescued Parkinsonism in a Drosophila model of PD, while Knockout of Omi exacerbated Parkinsonism. Expression of Omi counteracted the α-synuclein-induced retinal degeneration, providing additional evidence for Omi's protective role oligomeric α-synuclein. This work reports identification of the catabolic pathway of oligomeric α-synuclein as well as showing how Omi functions as the key molecule in the recognition and degradation of toxic oligomeric α-synuclein, a possible cause of neurodegeneration in PD, without affecting monomeric α-synuclein which is a native essential molecule for the normal function of neurons.


Subject(s)
Drosophila Proteins/biosynthesis , High-Temperature Requirement A Serine Peptidase 2/biosynthesis , Neuroprotection/physiology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/prevention & control , alpha-Synuclein/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila melanogaster , Female , High-Temperature Requirement A Serine Peptidase 2/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parkinsonian Disorders/genetics
8.
Nanomedicine ; 23: 102089, 2020 01.
Article in English | MEDLINE | ID: mdl-31487550

ABSTRACT

A cancer-targeted chemotherapy could potentially eradicate cancers if anticancer drugs are delivered precisely to the cancers. Although various types of nanoparticles have been developed for cancer-specific delivery of anticancer drugs, the drug delivery capabilities of these nanoparticles were not specific enough to eradicate cancer. Here, we developed a targeting-enhancing nanoparticle of paclitaxel, in which paclitaxel was encapsulated with a human serum albumin-haemin complex through non-covalent bonding. The average diameter of TENPA was approximately 140Ć¢Ā€ĀÆnm with a zeta potential of +29Ć¢Ā€ĀÆmV. TENPA maintained its structural integrity and stability without forming protein coronas in the blood for optimal passive targeting. These characteristics of TENPA resulted in paclitaxel accumulation that was 4.1 times greater than that of Abraxane, an albumin-bound paclitaxel, in cancer tissue. The dramatic improvement in cancer targeting of TENPA led to reduced systemic toxicity of paclitaxel and eradication of end-stage cancer in a xenografted mouse experiment.


Subject(s)
Drug Delivery Systems , Hemin , Neoplasms, Experimental/drug therapy , Paclitaxel , Serum Albumin, Human , Animals , Female , Hemin/chemistry , Hemin/pharmacology , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , PC-3 Cells , Paclitaxel/chemistry , Paclitaxel/pharmacology , Serum Albumin, Human/chemistry , Serum Albumin, Human/pharmacology , Xenograft Model Antitumor Assays
9.
Molecules ; 25(6)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204541

ABSTRACT

Heterojunction nanofibers of PAN decorated with sulfate doped Ag3PO4 nanoparticles (SO42--Ag3PO4/PAN electrospun nanofibers) were successfully fabricated by combining simple and versatile electrospinning technique with ion exchange reaction. The novel material possessing good flexibility could exhibit superior antibacterial property over sulfate undoped species (Ag3PO4/PAN electrospun nanofibers). FESEM, XRD, FTIR, XPS and DRS were applied to characterize the morphology, phase structure, bonding configuration, elemental composition, and optical properties of the as fabricated samples. FESEM characterization confirmed the successful incorporation of SO42--Ag3PO4 nanoparticles on PAN electrospun nanofibers. The doping of SO42- ions into Ag3PO4 crystal lattice by replacing PO43- ions can provide sufficient electron-hole separation capability to the SO42--Ag3PO4/PAN heterojunction to generate reactive oxygen species (ROS) under visible light irradiation and enhances its antibacterial performance. Finally, we hope this work may offer a new paradigm to design and fabricate other types of flexible self-supporting negative-ions-doped heterojunction nanofibers using electrospinning technique for bactericidal applications.


Subject(s)
Acrylic Resins/chemistry , Acrylonitrile/analogs & derivatives , Anti-Bacterial Agents/chemical synthesis , Silver/pharmacology , Sulfates/chemistry , Acrylonitrile/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Metal Nanoparticles , Microbial Sensitivity Tests , Nanocomposites/chemistry , Particle Size , Silver/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
10.
Crit Rev Microbiol ; 45(1): 118-129, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30773108

ABSTRACT

For decades, supporting the optimal growth of low birth weight (LBW) infants has been considered one of the most important paediatric challenges, despite advances in neonatal intensive care technology and nutrition interventions. Since gut microbiota affects such diverse phenotypes in adults, the difference in gut microbiota composition between normal infants and LBW infants raises the possibility of gut microbiota playing an important role in different growth rates of neonates. Based on the concept that probiotics are generally beneficial to the health, numerous studies have been made on probiotics as a supplement to the diet of the LBW infants. However, clinical results on the effects of probiotics on LBW infant growth are either inconsistent or contradictory with each other, and thus the contribution of gut microbiota in neonatal growth has remained inconclusive. In this review, recent researches on neonatal gut microbiota are discussed to develop a new strategy for targeting gut microbiota as a solution to growth retardation in LBW infants. We also discuss how to establish the ideal gut microbiota to support optimal growth of LBW infants.


Subject(s)
Child Development , Gastrointestinal Microbiome , Infant, Low Birth Weight/growth & development , Microbiota , Probiotics/administration & dosage , Humans , Infant, Newborn
11.
Bioconjug Chem ; 30(1): 90-100, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30485073

ABSTRACT

Prostate cancer is one of the most common cancers in the world. It is widely known that prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer, and hypoxia is a common characteristic of many solid tumors, including prostate cancer. In this study, we designed multifunctional fluorescent inhibitors to target PSMA and tumor hypoxia in order to increase the tumor uptake of inhibitors. Novel PSMA inhibitors were prepared using lysine as the backbone to connect three different functional groups: the glutamate-urea-lysine (GUL) structure for inhibiting PSMA, 2-nitroimidazole for the hypoxia-sensitive moiety, and a near-infrared fluorophore (sulfo-Cyanine 5.5). According to the in vitro PSMA binding assay, novel fluorescent inhibitors were demonstrated to have nanomolar binding affinities. Multifunctional inhibitor 2 with one 2-nitroimidazole had a similar inhibitory activity to inhibitor 1 that did not contain the hypoxia targeting moiety, but multifunctional inhibitor 3 with two 2-nitroimidazoles showed lower inhibitory activity than inhibitor 1 due to the bulky structure of the hypoxia-sensitive group. However, in vivo optical imaging and ex vivo biodistribution studies indicated that both multifunctional inhibitors 2 and 3 had higher accumulation in tumors than inhibitor 1 due to a synergistic combination of PSMA and hypoxia targeting moieties. These observations suggest that this novel multifunctional strategy might be a promising approach to improve the diagnosis and therapy of prostate cancer.


Subject(s)
Antigens, Surface/metabolism , Cell Hypoxia , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Glutamate Carboxypeptidase II/metabolism , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Female , Fluorescent Dyes/chemistry , Glutamic Acid/chemistry , Heterografts , Humans , Lysine/chemistry , Male , Mice , Mice, Inbred BALB C , Prostatic Neoplasms/pathology , Tissue Distribution , Urea/chemistry
12.
BMC Genomics ; 19(1): 292, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29695242

ABSTRACT

BACKGROUND: Recent experimental evidence showed that lactobacilli could be used as potential therapeutic agents for hyperammonemia. However, lack of understanding on how lactobacilli reduce blood ammonia levels limits application of lactobacilli to treat hyperammonemia. RESULTS: We report the finished and annotated genome sequence of L. amylovorus JBD401 (GenBank accession no. CP012389). L. amylovorus JBD401 reducing blood ammonia levels dramatically was identified by high-throughput screening of several thousand probiotic strains both within and across Lactobacillus species in vitro. Administration of L. amylovorus JBD401 to hyperammonemia-induced mice reduced the blood ammonia levels of the mice to the normal range. Genome sequencing showed that L. amylovorus JBD401 had a circular chromosome of 1,946,267Ā bp with an average GC content of 38.13%. Comparative analysis of the L. amylovorus JBD401 genome with L. acidophilus and L. amylovorus strains showed that L. amylovorus JBD401 possessed genes for ammonia assimilation into various amino acids and polyamines Interestingly, the genome of L. amylovorus JBD401 contained unusually large number of various pseudogenes suggesting an active stage of evolution. CONCLUSIONS: L. amylovorus JBD401 has genes for assimilation of free ammonia into various amino acids and polyamines which results in removal of free ammonia in intestinal lumen to reduce the blood ammonia levels in the host. This work explains the mechanism of how probiotics reduce blood ammonia levels.


Subject(s)
Ammonia/blood , Genome, Bacterial , Lactobacillus/genetics , Amino Acids/metabolism , Ammonia/metabolism , Animals , Bacterial Proteins/genetics , Comparative Genomic Hybridization , Evolution, Molecular , Lactobacillus/metabolism , Lactobacillus acidophilus/genetics , Metabolic Networks and Pathways/genetics , Mice , Ornithine Carbamoyltransferase/genetics , Phosphotransferases (Carboxyl Group Acceptor)/genetics , Polyamines/metabolism
13.
Bioorg Med Chem Lett ; 28(4): 572-576, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29402740

ABSTRACT

Prostate-specific membrane antigen (PSMA) is an important biological target for therapy and diagnosis of prostate cancer. In this study, novel multivalent PSMA inhibitors with glutamate-urea-lysine structures were designed to improve inhibition characteristics. Precursors of the novel inhibitors were prepared from glutamic acid with di-tert-butyl ester. A near-infrared molecular dye, sulfo-Cy5.5, was introduced into the precursors to generate the final PSMA fluorescent inhibitors, compounds 12-14, to visualize prostate cancer. Biological behaviors of the inhibitors were evaluated using in vitro inhibition assays, in vivo fluorescent imaging, and ex vivo biodistribution assays. Ki values from inhibition studies indicated that dimeric inhibitor 13 with a glutamine linker showed approximately 3-fold more inhibitory activity than monomeric inhibitor 12. According to other biological studies using a mouse model of prostate cancer, dimeric inhibitor compounds 13 and 14 had higher tumor accumulation than the monomer. However, glutamine-based dimeric inhibitor 13 showed lower liver uptake than dimeric inhibitor 14, which had a benzene structure. Thus, these studies suggest that glutamine-based dimeric inhibitor 13 can be a promising optical inhibitor of prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Fluorescent Dyes/pharmacology , Glutamate Carboxypeptidase II/antagonists & inhibitors , Membrane Glycoproteins/antagonists & inhibitors , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Carbocyanines/chemical synthesis , Carbocyanines/metabolism , Carbocyanines/pharmacology , Female , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Male , Mice, Inbred BALB C , Tissue Distribution
14.
Molecules ; 22(10)2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29064399

ABSTRACT

Metabolic syndrome (MetS) is a cluster of metabolic risk factors associated with central obesity, hyperglycemia, insulin resistance, dyslipidemia and high blood pressure. In recent decades, because of the remarkable increase in both prevalence and severity, MetS and its related diseases such as cardiovascular diseases (CVDs), obesity, hypertension and diabetes have become the main global burden and challenge in strategic management involving prevention and treatment. However, currently, the preventions and treatments based on pharmaceutical interventions do not provide a solution for MetS and its related diseases. Recently, gut microbiota showed clear evidence of preventing and/or treating MetS, shedding light on treating MetS and its related diseases through a completely different approach. In this review, we will interpret the effects of current pharmaceutical drugs used in preventing and treating MetS and its related diseases to understand remaining issues of those interventions. We will explore the possibility of developing gut microbiota as pharmabiotics in a completely new medication option for treating MetS and its related diseases.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome/therapy , Probiotics , Cardiovascular Diseases/complications , Cardiovascular Diseases/therapy , Diabetes Mellitus/therapy , Humans , Hypertension/complications , Hypertension/therapy , Metabolic Syndrome/complications , Metabolic Syndrome/prevention & control , Obesity/complications , Obesity/therapy , Risk Factors
15.
Indian J Microbiol ; 57(3): 365-369, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28904423

ABSTRACT

Current colony PCR methods are not suitable for screening genes encoded in genomic DNA and are limited to E. coli host strains. Here, we describe an ultra-high efficient colony PCR method for high throughput screening of bacterial genes embedded in the genomic DNA of any bacterial species. This new technique expands colony PCR method to several hosts as well as offers a rapid, less expensive and reliable bacterial genomic DNA extraction.

16.
Front Cell Infect Microbiol ; 14: 1348279, 2024.
Article in English | MEDLINE | ID: mdl-38435303

ABSTRACT

Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Prions , Humans , alpha-Synuclein , Dysbiosis , Neuroinflammatory Diseases , Prion Proteins
17.
Aging (Albany NY) ; 15(22): 12749-12762, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37983180

ABSTRACT

Phytochemicals are increasingly recognized in the field of healthy aging as potential therapeutics against various aging-related diseases. Nutmeg, derived from the Myristica fragrans tree, is an example. Nutmeg has been extensively studied and proven to possess antioxidant properties that protect against aging and alleviate serious diseases such as cancer, heart disease, and liver disease. However, the specific active ingredient in nutmeg responsible for these health benefits has not been identified thus far. In this study, we present evidence that Nectandrin B (NecB), a bioactive lignan compound isolated from nutmeg, significantly extended the lifespan of the fruit fly Drosophila melanogaster by as much as 42.6% compared to the control group. NecB also improved age-related symptoms including locomotive deterioration, body weight gain, eye degeneration, and neurodegeneration in aging D. melanogaster. This result represents the most substantial improvement in lifespan observed in animal experiments to date, suggesting that NecB may hold promise as a potential therapeutic agent for promoting longevity and addressing age-related degeneration.


Subject(s)
Drosophila melanogaster , Lignans , Animals , Drosophila , Longevity , Lignans/pharmacology
18.
Int J Antimicrob Agents ; 62(5): 106973, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741586

ABSTRACT

Potentially significant drug candidates often face elimination from consideration due to the lack of an effective method for systemic delivery. The poor solubility of these candidates has posed a major obstacle for their development as oral pills or injectables. Niclosamide, a host-directed antiviral, is a good example. In this study, a nanoformulation technology that allows for the non-covalent formulation of niclosamide with cholic acids was developed. This formulation enables efficient systemic delivery through endocytosis and enterohepatic circulation of bile-acid-coated nanoparticles. The oral bioavailability of niclosamide-delivery nanoparticles (NDNs) was significantly enhanced to 38.3%, representing an eight-fold increase compared with pure niclosamide. Consequently, the plasma concentration of niclosamide for the NDN formulation reached 1179.6 ng/mL, which is 11 times higher than the therapeutic plasma level. This substantial increase in plasma level contributed to the complete resolution of clinical symptoms in animals infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This nanoformulation not only provides an orally deliverable antiviral drug for SARS-CoV-2 with improved pharmaceutical bioavailability, but also offers a solution to the systemic delivery challenges faced by potentially significant drug candidates.


Subject(s)
Cholates , Niclosamide , Animals , SARS-CoV-2 , Solubility , Antiviral Agents
19.
Microorganisms ; 10(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35630504

ABSTRACT

The precise mechanisms of action of the host's gut microbiome at the level of its constituting bacteria are obscure in most cases despite its definitive role. To study the precise role of the gut microbiome on the phenotypes of a host by excluding host factors, we analyzed two different gut microbiomes within the same individual mouse after replacing the gut microbiome with a new one to exclude the host factors. The gut microbiome of conventional C57BL/6 mice was randomly reestablished by feeding fecal samples from obese humans to the mice, and depleting their original gut microbiome with an antibiotic and antifungal treatment. Comparison of body weight changes before and 3 months after the replacement of the gut microbiome showed that the gut microbiome replacement affected the body weight gain in three different ways: positive, medium, and negative. The differences in body weight gain were associated with establishment of a different kind of gut microbiome in each of the mice. In addition, body weight gaining was negatively associated with the Firmicutes/Bacteroidetes ratio, which is consistent with previous recent findings. Thorough statistical analysis at low taxonomic levels showed that uncultured bacteria NR_074436.1, NR_144750.1, and NR_0421101.1 were positively associated with body weight gain, while Trichinella pseudospiralis and uncultured bacteria NR_024815.1 and NR_144616.1 were negatively associated. This work shows that replacement of the gut microbiome within the same individual provides an excellent opportunity for the purpose of gut microbiome analysis by excluding the host factors.

20.
Front Cell Infect Microbiol ; 12: 915701, 2022.
Article in English | MEDLINE | ID: mdl-35937689

ABSTRACT

Autism spectrum disorder (ASD) is a neurological disorder that affects normal brain development. The recent finding of the microbiota-gut-brain axis indicates the bidirectional connection between our gut and brain, demonstrating that gut microbiota can influence many neurological disorders such as autism. Most autistic patients suffer from gastrointestinal (GI) symptoms. Many studies have shown that early colonization, mode of delivery, and antibiotic usage significantly affect the gut microbiome and the onset of autism. Microbial fermentation of plant-based fiber can produce different types of short-chain fatty acid (SCFA) that may have a beneficial or detrimental effect on the gut and neurological development of autistic patients. Several comprehensive studies of the gut microbiome and microbiota-gut-brain axis help to understand the mechanism that leads to the onset of neurological disorders and find possible treatments for autism. This review integrates the findings of recent years on the gut microbiota and ASD association, mainly focusing on the characterization of specific microbiota that leads to ASD and addressing potential therapeutic interventions to restore a healthy balance of gut microbiome composition that can treat autism-associated symptoms.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Diseases , Gastrointestinal Microbiome , Microbiota , Fatty Acids, Volatile , Gastrointestinal Microbiome/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL