Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
EMBO J ; 40(10): e106785, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33934382

ABSTRACT

The interplay between extrinsic signaling and downstream gene networks controls the establishment of cell identity during development and its maintenance in adult life. Advances in next-generation sequencing and single-cell technologies have revealed additional layers of complexity in cell identity. Here, we review our current understanding of transcription factor (TF) networks as key determinants of cell identity. We discuss the concept of the core regulatory circuit as a set of TFs and interacting factors that together define the gene expression profile of the cell. We propose the core regulatory circuit as a comprehensive conceptual framework for defining cellular identity and discuss its connections to cell function in different contexts.


Subject(s)
Regenerative Medicine/methods , Humans , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Mucosal Immunol ; 17(1): 1-12, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37952849

ABSTRACT

Type-3 innate lymphoid cells (ILC3) respond to localized environmental cues to regulate homeostasis and orchestrate immunity in the intestine. The intestinal epithelium is an important upstream regulator and downstream target of ILC3 signaling, however, the complexity of mucosal tissues can hinder efforts to define specific interactions between these two compartments. Here, we employ a reductionist co-culture system of murine epithelial small intestinal organoids (SIO) with ILC3 to uncover bi-directional signaling mechanisms that underlie intestinal homeostasis. We report that ILC3 induce global transcriptional changes in intestinal epithelial cells, driving the enrichment of secretory goblet cell signatures. We find that SIO enriched for goblet cells promote NKp46+ ILC3 and interleukin (IL)-22 expression, which can feedback to induce IL-22-mediated epithelial transcriptional signatures. However, we show that epithelial regulation of ILC3 in this system is contact-dependent and demonstrate a role for epithelial Delta-Like-Canonical-Notch-Ligand (Dll) in driving IL-22 production by ILC3, via subset-specific Notch1-mediated activation of T-bet+ ILC3. Finally, by interfering with Notch ligand-receptor dynamics, ILC3 appear to upregulate epithelial Atoh1 to skew secretory lineage determination in SIO-ILC3 co-cultures. This research outlines two complimentary bi-directional signaling modules between the intestinal epithelium and ILC3, which may be relevant in intestinal homeostasis and disease.


Subject(s)
Interleukin-22 , Lymphocytes , Mice , Animals , Immunity, Innate , Ligands , Intestinal Mucosa , Receptors, Notch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL