Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Am J Hum Genet ; 111(1): 200-210, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38118446

ABSTRACT

The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.


Subject(s)
GTP-Binding Proteins , Microcephaly , Nervous System Malformations , Neurodevelopmental Disorders , Animals , Humans , Drosophila melanogaster/genetics , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Drosophila Proteins/genetics
2.
Am J Hum Genet ; 110(11): 1938-1949, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37865086

ABSTRACT

Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.


Subject(s)
Fanconi Anemia , Humans , Fanconi Anemia/diagnosis , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , DNA Methylation/genetics , Proteins/genetics , DNA/metabolism
3.
Am J Hum Genet ; 109(10): 1909-1922, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36044892

ABSTRACT

The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction.


Subject(s)
Intellectual Disability , Musculoskeletal Abnormalities , Pelger-Huet Anomaly , Cell Nucleus/genetics , Child , Chromatin , Humans , Intellectual Disability/genetics , Loss of Heterozygosity , Pelger-Huet Anomaly/genetics
4.
Ann Neurol ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39301775

ABSTRACT

OBJECTIVE: De novo variants in cullin-3 ubiquitin ligase (CUL3) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here, we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. METHODS: Genetic data and detailed clinical records were collected via multicenter collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. RESULTS: We assembled a cohort of 37 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 35 have loss-of-function (LoF) and 2 have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro. Notably, we show that 4E-BP1 (EIF4EBP1), a prominent substrate of CUL3, fails to be targeted for proteasomal degradation in patient-derived cells. INTERPRETATION: Our study further refines the clinical and mutational spectrum of CUL3-associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism. ANN NEUROL 2024.

5.
J Pathol ; 263(2): 166-177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38629245

ABSTRACT

Infantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation. In a large proportion of these tumors, which are classified as IFS-like mesenchymal neoplasms, the contributing molecular events remain to be identified. Here, we report three distinct rearrangements involving RAF1 among eight ETV6::NTRK3 gene fusion-negative tumors with an original histological diagnosis of IFS/CMN. The three fusion proteins retain the entire catalytic domain of the kinase. Two chimeric products, GOLGA4::RAF1 and LRRFIP2::RAF1, had previously been reported as driver events in different cancers, whereas the third, CLIP1::RAF1, represents a novel fusion protein. We demonstrate that CLIP1::RAF1 acts as a bona fide oncoprotein promoting cell proliferation and migration through constitutive upregulation of MAPK signaling. We show that the CLIP1::RAF1 hyperactive behavior does not require RAS activation and is mediated by constitutive 14-3-3 protein-independent dimerization of the chimeric protein. As previously reported for the ETV6::NTRK3 fusion protein, CLIP1::RAF1 similarly upregulates PI3K-AKT signaling. Our findings document that RAF1 gene rearrangements represent a recurrent event in ETV6::NTRK3-negative IFS/CMN and provide a rationale for the use of inhibitors directed to suppress MAPK and PI3K-AKT signaling in these cancers. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Fibrosarcoma , Nephroma, Mesoblastic , Oncogene Proteins, Fusion , Proto-Oncogene Proteins c-raf , Humans , Fibrosarcoma/genetics , Fibrosarcoma/pathology , Proto-Oncogene Proteins c-raf/genetics , Infant , Oncogene Proteins, Fusion/genetics , Nephroma, Mesoblastic/genetics , Nephroma, Mesoblastic/pathology , Female , Male , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Gene Fusion , Signal Transduction/genetics , Proto-Oncogene Proteins c-ets/genetics , Cell Proliferation , Gene Rearrangement , ETS Translocation Variant 6 Protein , Receptor, trkC
6.
Am J Hum Genet ; 108(11): 2112-2129, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34626534

ABSTRACT

Upregulated signal flow through RAS and the mitogen-associated protein kinase (MAPK) cascade is the unifying mechanistic theme of the RASopathies, a family of disorders affecting development and growth. Pathogenic variants in more than 20 genes have been causally linked to RASopathies, the majority having a dominant role in promoting enhanced signaling. Here, we report that SPRED2 loss of function is causally linked to a recessive phenotype evocative of Noonan syndrome. Homozygosity for three different variants-c.187C>T (p.Arg63∗), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗95)-were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behavior. When overexpressed in cells, all variants were unable to negatively modulate EGF-promoted RAF1, MEK, and ERK phosphorylation, and time-course experiments in primary fibroblasts (p.Leu100Pro and p.Leu381Hisfs∗95) documented an increased and prolonged activation of the MAPK cascade in response to EGF stimulation. Morpholino-mediated knockdown of spred2a and spred2b in zebrafish induced defects in convergence and extension cell movements indicating upregulated RAS-MAPK signaling, which were rescued by expressing wild-type SPRED2 but not the SPRED2Leu381Hisfs∗95 protein. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome. These features, in part, characterize the phenotype of Spred2-/- mice. Our findings identify the second recessive form of Noonan syndrome and document pleiotropic consequences of SPRED2 loss of function in development.


Subject(s)
Loss of Function Mutation , Noonan Syndrome/genetics , Phenotype , Repressor Proteins/genetics , Alleles , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , Humans , MAP Kinase Signaling System , Mice , Mice, Knockout , Zebrafish
7.
Am J Hum Genet ; 108(1): 115-133, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33308444

ABSTRACT

Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functioning as co-receptors for a variety of growth factors. Here we report that bi-allelic inactivating variants in SCUBE3 have pleiotropic consequences on development and cause a previously unrecognized syndromic disorder. Eighteen affected individuals from nine unrelated families showed a consistent phenotype characterized by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies. In vitro functional validation studies demonstrated a variable impact of disease-causing variants on transcript processing, protein secretion and function, and their dysregulating effect on bone morphogenetic protein (BMP) signaling. We show that SCUBE3 acts as a BMP2/BMP4 co-receptor, recruits the BMP receptor complexes into raft microdomains, and positively modulates signaling possibly by augmenting the specific interactions between BMPs and BMP type I receptors. Scube3-/- mice showed craniofacial and dental defects, reduced body size, and defective endochondral bone growth due to impaired BMP-mediated chondrogenesis and osteogenesis, recapitulating the human disorder. Our findings identify a human disease caused by defective function of a member of the SCUBE family, and link SCUBE3 to processes controlling growth, morphogenesis, and bone and teeth development through modulation of BMP signaling.


Subject(s)
Bone and Bones/metabolism , Calcium-Binding Proteins/metabolism , Developmental Disabilities/metabolism , Osteogenesis/physiology , Signal Transduction/physiology , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Line , Cell Line, Tumor , Female , Gene Expression Regulation, Developmental/physiology , HEK293 Cells , Hep G2 Cells , Humans , Intercellular Signaling Peptides and Proteins/metabolism , MCF-7 Cells , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL
8.
Am J Hum Genet ; 108(3): 502-516, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33596411

ABSTRACT

Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals with truncating variants in SPEN to define a neurodevelopmental disorder presenting with features that overlap considerably with those of proximal del1p36 syndrome. The clinical profile of this disease includes developmental delay/intellectual disability, autism spectrum disorder, anxiety, aggressive behavior, attention deficit disorder, hypotonia, brain and spine anomalies, congenital heart defects, high/narrow palate, facial dysmorphisms, and obesity/increased BMI, especially in females. SPEN also emerges as a relevant gene for del1p36 syndrome by co-expression analyses. Finally, we show that haploinsufficiency of SPEN is associated with a distinctive DNA methylation episignature of the X chromosome in affected females, providing further evidence of a specific contribution of the protein to the epigenetic control of this chromosome, and a paradigm of an X chromosome-specific episignature that classifies syndromic traits. We conclude that SPEN is required for multiple developmental processes and SPEN haploinsufficiency is a major contributor to a disorder associated with deletions centromeric to the previously established 1p36 critical regions.


Subject(s)
Chromosome Disorders/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, X/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics , Adolescent , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/physiopathology , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Female , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Phenotype , Young Adult
9.
Am J Med Genet C Semin Med Genet ; 193(2): 160-166, 2023 06.
Article in English | MEDLINE | ID: mdl-36734411

ABSTRACT

Gain of function pathogenic variants in MRAS have been found in a small subset of pediatric subjects presenting with Noonan syndrome (NS) associated with hypertrophic cardiomyopathy (HCM) and moderate to severe intellectual disability. These variants are considered to confer a high-risk for the development of severe HCM with poor prognosis and fatal outcome. We report on the natural history of the first adult subject with NS carrying the recurrent pathogenic p.Thr68Ile amino acid substitution. Different from what had previously been observed, he presented with a mild, late-onset left ventricular hypertrophy, and a constellation of additional symptoms rarely seen in NS. The present case provides evidence that HCM does not represent an obligatory, early-onset and severe complication in subjects with MRAS variants. It also adds new data about late-onset features suggesting that other unexpected complications might be observed in adult subjects providing anticipatory guidance for individuals of all age.


Subject(s)
Cardiomyopathy, Hypertrophic , Noonan Syndrome , Male , Child , Humans , Adult , Noonan Syndrome/complications , Noonan Syndrome/genetics , Noonan Syndrome/diagnosis , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/complications , Cardiomyopathy, Hypertrophic/genetics , Amino Acid Substitution , Mutation , Phenotype , ras Proteins/genetics
10.
Am J Hum Genet ; 107(6): 1062-1077, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33217309

ABSTRACT

Dysfunction of the endolysosomal system is often associated with neurodegenerative disease because postmitotic neurons are particularly reliant on the elimination of intracellular aggregates. Adequate function of endosomes and lysosomes requires finely tuned luminal ion homeostasis and transmembrane ion fluxes. Endolysosomal CLC Cl-/H+ exchangers function as electric shunts for proton pumping and in luminal Cl- accumulation. We now report three unrelated children with severe neurodegenerative disease, who carry the same de novo c.1658A>G (p.Tyr553Cys) mutation in CLCN6, encoding the late endosomal Cl-/H+-exchanger ClC-6. Whereas Clcn6-/- mice have only mild neuronal lysosomal storage abnormalities, the affected individuals displayed severe developmental delay with pronounced generalized hypotonia, respiratory insufficiency, and variable neurodegeneration and diffusion restriction in cerebral peduncles, midbrain, and/or brainstem in MRI scans. The p.Tyr553Cys amino acid substitution strongly slowed ClC-6 gating and increased current amplitudes, particularly at the acidic pH of late endosomes. Transfection of ClC-6Tyr553Cys, but not ClC-6WT, generated giant LAMP1-positive vacuoles that were poorly acidified. Their generation strictly required ClC-6 ion transport, as shown by transport-deficient double mutants, and depended on Cl-/H+ exchange, as revealed by combination with the uncoupling p.Glu200Ala substitution. Transfection of either ClC-6Tyr553Cys/Glu200Ala or ClC-6Glu200Ala generated slightly enlarged vesicles, suggesting that p.Glu200Ala, previously associated with infantile spasms and microcephaly, is also pathogenic. Bafilomycin treatment abrogated vacuole generation, indicating that H+-driven Cl- accumulation osmotically drives vesicle enlargement. Our work establishes mutations in CLCN6 associated with neurological diseases, whose spectrum of clinical features depends on the differential impact of the allele on ClC-6 function.


Subject(s)
Chloride Channels/genetics , Gain of Function Mutation , Neurodegenerative Diseases/genetics , Alleles , Animals , CHO Cells , Child , Cricetulus , Electrophysiology , Endosomes/metabolism , Female , HeLa Cells , Heterozygote , Homeostasis , Humans , Hydrogen-Ion Concentration , Infant , Ion Transport , Ions , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Macrolides/pharmacology , Magnetic Resonance Imaging , Male , Mice , Mice, Knockout , Microscopy, Video , Transfection
11.
Am J Hum Genet ; 107(6): 1129-1148, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33186545

ABSTRACT

The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Vacuolar Proton-Translocating ATPases/genetics , Alleles , Animals , Brain/abnormalities , Cell Cycle , Centrosome/metabolism , Endosomes/metabolism , Fibroblasts/metabolism , Genomics , HEK293 Cells , HeLa Cells , Humans , Mice , Neurons/metabolism , Protein Domains , Protein Transport , Spindle Apparatus/metabolism
12.
Am J Hum Genet ; 106(4): 484-495, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32220290

ABSTRACT

Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.


Subject(s)
Acyltransferases/genetics , Cell Adhesion Molecules/genetics , Cerebellar Diseases/genetics , Epilepsy/genetics , Genetic Variation/genetics , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/genetics , Abnormalities, Multiple/genetics , Alleles , Female , Humans , Intellectual Disability/genetics , Male , Nervous System Malformations/genetics , Pedigree , Syndrome
13.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109418

ABSTRACT

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Subject(s)
DNA Methylation , Neurodevelopmental Disorders/genetics , Phenotype , Cohort Studies , Genetic Heterogeneity , Humans , Syndrome
14.
Am J Hum Genet ; 107(3): 499-513, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32721402

ABSTRACT

Signal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.e., extracellular signal-regulated protein kinase 2, ERK2), cause a neurodevelopmental disease within the RASopathy phenotypic spectrum, reminiscent of Noonan syndrome in some subjects. Pathogenic variants promote increased phosphorylation of the kinase, which enhances translocation to the nucleus and boosts MAPK signaling in vitro and in vivo. Two variant classes are identified, one of which directly disrupts binding to MKP3, a dual-specificity protein phosphatase negatively regulating ERK function. Importantly, signal dysregulation driven by pathogenic MAPK1 variants is stimulus reliant and retains dependence on MEK activity. Our data support a model in which the identified pathogenic variants operate with counteracting effects on MAPK1 function by differentially impacting the ability of the kinase to interact with regulators and substrates, which likely explains the minor role of these variants as driver events contributing to oncogenesis. After nearly 20 years from the discovery of the first gene implicated in Noonan syndrome, PTPN11, the last tier of the MAPK cascade joins the group of genes mutated in RASopathies.


Subject(s)
Carcinogenesis/genetics , Mitogen-Activated Protein Kinase 1/genetics , Neurodevelopmental Disorders/genetics , Noonan Syndrome/genetics , Child, Preschool , Female , Humans , MAP Kinase Signaling System/genetics , Male , Mutation, Missense/genetics , Neurodevelopmental Disorders/pathology , Noonan Syndrome/physiopathology , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Signal Transduction , Exome Sequencing , ras Proteins/genetics
15.
Mod Pathol ; 36(2): 100039, 2023 02.
Article in English | MEDLINE | ID: mdl-36853789

ABSTRACT

In the pediatric population, BCL6-correpresor gene (BCOR)-upregulated tumors include primitive myxoid mesenchymal tumors/undifferentiated sarcomas (PMMTI/UND), clear cell sarcomas of the kidney (CCSK), and high-grade neuroepithelial tumors (HG-NET). We investigated DNA methylation (DNAm) and copy number variation (CNV) profiling in these tumors (N = 34) using an Illumina EPIC BeadChip to better define the potential use of these tools to confirm diagnosis and predict outcomes. Twenty-seven tumors from 25 patients (age range, 0-10 years), showed molecular confirmation of genetic abnormalities as follows: BCOR internal tandem duplication in 14 PMMTI/UND, 8 CCSK, and 3 HG-NET and YWHAE fusions in 2 PMMTI/UND. The remaining 7 cases lacking informative molecular data were analyzed by immunophenotyping and were included in the study as a training cohort, clearly separated from the main study group. These were 4 PMMTI, 1 HG-NET, and 1 CCSK in which poor RNA preservation precluded the confirmation of BCOR rearrangements and 1 CCSK in which no rearrangements were found. DNAm data were compared with those of brain tumor and/or sarcoma classifier. Differentially methylated regions (DMRs) were analyzed in the 3 groups. Twenty-two cases of the 24 molecularly confirmed PMMTI/UND and CCSK and 3 of 6 of those with only immunophenotyping were classified within the methylation class "BCOR-altered sarcoma family" with optimal calibrated scores. PMMTI/UND and CCSK showed similar methylation profiles, whereas thousands of DMRs and significantly enriched pathways were evident between soft tissue/kidney tumors and HG-NET. The CNV analysis showed an overall flat profile in 19 of the 31 evaluable tumors (8/10 CCSK; 9/18 PMMTI/UND; 2/4 HG-NET). The most frequent CNVs were 1q gain and 9p and 10q loss. Follow-up time data were available for 20 patients: ≥2 CNV significantly correlated with a worse overall survival rate. In conclusion, soft tissue and kidney BCOR sarcomas matched with BCOR-altered sarcoma methylation class, whereas those from the brain matched with the central nervous system tumor classifier HG-NET BCOR, supporting the notion that DNAm profiling is an informative diagnostic tool. CNV alterations were associated with a more aggressive clinical behavior.


Subject(s)
Kidney Neoplasms , Sarcoma , Soft Tissue Neoplasms , Child , Humans , Infant, Newborn , Infant , Child, Preschool , DNA Methylation , DNA Copy Number Variations , Kidney , Kidney Neoplasms/genetics , Sarcoma/genetics , Soft Tissue Neoplasms/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics
16.
Genet Med ; 25(1): 49-62, 2023 01.
Article in English | MEDLINE | ID: mdl-36322151

ABSTRACT

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Mice , Animals , Humans , DNA Methylation/genetics , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , DNA , Mutation
17.
Genet Med ; 25(4): 100018, 2023 04.
Article in English | MEDLINE | ID: mdl-36681873

ABSTRACT

PURPOSE: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. METHODS: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. RESULTS: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). CONCLUSION: The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.


Subject(s)
Intellectual Disability , Humans , Exome Sequencing , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Alleles , Genotype
18.
Clin Genet ; 103(6): 688-692, 2023 06.
Article in English | MEDLINE | ID: mdl-36705342

ABSTRACT

Disease-specific DNA methylation patterns (DNAm signatures) have been established for an increasing number of genetic disorders and represent a valuable tool for classification of genetic variants of uncertain significance (VUS). Sample size and batch effects are critical issues for establishing DNAm signatures, but their impact on the sensitivity and specificity of an already established DNAm signature has not previously been tested. Here, we assessed whether publicly available DNAm data can be employed to generate a binary machine learning classifier for VUS classification, and used variants in KMT2D, the gene associated with Kabuki syndrome, together with an existing DNAm signature as proof-of-concept. Using publicly available methylation data for training, a classifier for KMT2D variants was generated, and individuals with molecularly confirmed Kabuki syndrome and unaffected individuals could be correctly classified. The present study documents the clinical utility of a robust DNAm signature even for few affected individuals, and most importantly, underlines the importance of data sharing for improved diagnosis of rare genetic disorders.


Subject(s)
Abnormalities, Multiple , Hematologic Diseases , Vestibular Diseases , Humans , DNA Methylation , Abnormalities, Multiple/genetics , Hematologic Diseases/genetics , Vestibular Diseases/genetics
19.
J Med Genet ; 59(2): 170-179, 2022 02.
Article in English | MEDLINE | ID: mdl-33323470

ABSTRACT

INTRODUCTION: The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS: We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS: We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION: Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.


Subject(s)
Chromatin/metabolism , Neurodevelopmental Disorders/genetics , Protein Kinases/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Female , Humans , Male , Metabolome , Middle Aged , Mutation , Mutation, Missense , Neurodevelopmental Disorders/enzymology , Pedigree , Protein Interaction Mapping , Protein Kinases/metabolism , Exome Sequencing , Young Adult
20.
Hum Mutat ; 43(11): 1609-1628, 2022 11.
Article in English | MEDLINE | ID: mdl-35904121

ABSTRACT

An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive, and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes, which can share significant overlap among different conditions. In this study, we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of disorder-specific and recurring genome-wide differentially methylated probes (DMPs) and regions (DMRs). The overall distribution of DMPs and DMRs across the majority of the neurodevelopmental genetic syndromes analyzed showed substantial enrichment in gene promoters and CpG islands, and under-representation of the more variable intergenic regions. Analysis showed significant enrichment of the DMPs and DMRs in gene pathways and processes related to neurodevelopment, including neurogenesis, synaptic signaling and synaptic transmission. This study expands beyond the diagnostic utility of DNA methylation episignatures by demonstrating correlation between the function of the mutated genes and the consequent genomic DNA methylation profiles as a key functional element in the molecular etiology of genetic neurodevelopmental disorders.


Subject(s)
DNA Methylation , Neurodevelopmental Disorders , CpG Islands/genetics , DNA Methylation/genetics , DNA, Intergenic , Epigenesis, Genetic , Humans , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL