Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Proc Natl Acad Sci U S A ; 119(40): e2204509119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161894

ABSTRACT

Multiple sclerosis (MS), an autoimmune-driven, inflammatory demyelinating disease of the central nervous system (CNS), causes irreversible accumulation of neurological deficits to a variable extent. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, immunosuppressive therapies show limited efficacy in secondary progressive MS (SPMS). Although modulation of sphingosine-1 phosphate receptors has proven beneficial during SPMS, the underlying mechanisms are poorly understood. In this project, we followed the hypothesis that siponimod, a sphingosine-1 phosphate receptor modulator, exerts protective effects by direct modulation of glia cell function (i.e., either astrocytes, microglia, or oligodendrocytes). To this end, we used the toxin-mediated, nonautoimmune MS animal model of cuprizone (Cup) intoxication. On the histological level, siponimod ameliorated cuprizone-induced oligodendrocyte degeneration, demyelination, and axonal injury. Protective effects were evident as well using GE180 translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET)/computed tomography (CT) imaging or next generation sequencing (NGS). Siponimod also ameliorated the cuprizone-induced pathologies in Rag1-deficient mice, demonstrating that the protection is independent of T and B cell modulation. Proinflammatory responses in primary mixed astrocytes/microglia cell cultures were not modulated by siponimod, suggesting that other cell types than microglia and astrocytes are targeted. Of note, siponimod completely lost its protective effects in S1pr5-deficient mice, suggesting direct protection of degenerating oligodendrocytes. Our study demonstrates that siponimod exerts protective effects in the brain in a S1PR5-dependent manner. This finding is not just relevant in the context of MS but in other neuropathologies as well, characterized by a degeneration of the axon-myelin unit.


Subject(s)
Azetidines , Benzyl Compounds , Multiple Sclerosis, Chronic Progressive , Oligodendroglia , Sphingosine-1-Phosphate Receptors , Sphingosine , Animals , Azetidines/pharmacology , Benzyl Compounds/pharmacology , Cuprizone , Disease Models, Animal , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Multiple Sclerosis, Chronic Progressive/drug therapy , Oligodendroglia/drug effects , Sphingosine/pharmacology , Sphingosine/therapeutic use , Sphingosine-1-Phosphate Receptors/metabolism
2.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240031

ABSTRACT

Spinal cord injury (SCI) results in the production of proinflammatory cytokines due to inflammasome activation. Lipocalin 2 (LCN2) is a small secretory glycoprotein upregulated by toll-like receptor (TLR) signaling in various cells and tissues. LCN2 secretion is induced by infection, injury, and metabolic disorders. In contrast, LCN2 has been implicated as an anti-inflammatory regulator. However, the role of LCN2 in inflammasome activation during SCI remains unknown. This study examined the role of Lcn2 deficiency in the NLRP3 inflammasome-dependent neuroinflammation in SCI. Lcn2-/- and wild-type (WT) mice were subjected to SCI, and locomotor function, formation of the inflammasome complex, and neuroinflammation were assessed. Our findings demonstrated that significant activation of the HMGB1/PYCARD/caspase-1 inflammatory axis was accompanied by the overexpression of LCN2 7 days after SCI in WT mice. This signal transduction results in the cleaving of the pyroptosis-inducing protein gasdermin D (GSDMD) and the maturation of the proinflammatory cytokine IL-1ß. Furthermore, Lcn2-/- mice showed considerable downregulation in the HMGB1/NLRP3/PYCARD/caspase-1 axis, IL-1ß production, pore formation, and improved locomotor function compared with WT. Our data suggest that LCN2 may play a role as a putative molecule for the induction of inflammasome-related neuroinflammation in SCI.


Subject(s)
HMGB1 Protein , Spinal Cord Injuries , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipocalin-2/genetics , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Neuroinflammatory Diseases , Spinal Cord Injuries/metabolism , Cytokines/metabolism , Caspases/metabolism , Pyroptosis/physiology
3.
Glia ; 70(11): 2188-2206, 2022 11.
Article in English | MEDLINE | ID: mdl-35856297

ABSTRACT

Multiple sclerosis (MS) is a central nervous system disease characterized by both degenerative and inflammatory processes. Various mediators are involved in the interplay of degeneration and innate immunity on one hand and peripheral adaptive immunity on the other hand. The secreted protein lipocalin 2 (LCN2) is an inflammatory modulator in a variety of pathologies. Although elevated intrathecal levels of LCN2 have been reported in MS patients, it's functional role is widely unknown. Here, we identified a subpopulation of astrocytes as a source of LCN2 in MS lesions and respective animal models. We investigated the functional role of LCN2 for both autoimmune and degenerative aspects in three MS mouse models including both wild type (WT) and Lcn2-/- mouse strains. While the experimental autoimmune encephalomyelitis (EAE) model reflects primary autoimmunity, the cuprizone model reflects selective oligodendrocyte loss and demyelination. In addition, we included a combinatory Cup/EAE model in which primary cytodegeneration is followed by inflammatory lesions within the forebrain. While in the EAE model, the disease outcome was comparable in between the two mouse strains, cuprizone intoxicated Lcn2-/- animals showed an increased loss of oligodendrocytes. In the Cup/EAE model, Lcn2-/- animals showed increased inflammation when compared to WT mice. Together, our results highlight LCN2 as a potentially protective molecule in MS lesion formation, which might be able to limit loss of oligodendrocytes immune-cell invasion. Despite these findings, it is not yet clear which glial cell phenotype (and to which extent) contributes to the observed neuroprotective effects, that is, microglia and/or astroglia or even endothelial cells in the brain.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Lipocalin-2/metabolism , Multiple Sclerosis , Animals , Cuprizone , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/metabolism , Endothelial Cells/metabolism , Lipocalin-2/genetics , Mice , Mice, Inbred C57BL , Multiple Sclerosis/pathology , Oligodendroglia/metabolism , Prosencephalon/pathology
4.
J Neuroinflammation ; 19(1): 134, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35668451

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) induces a multitude of deleterious processes, including neuroinflammation and oxidative stress (OS) which contributed to neuronal damage and demyelination. Recent studies have suggested that increased formation of reactive oxygen species (ROS) and the consequent OS are critical events associated with SCI. However, there is still little information regarding the impact of these events on SCI. Astrocytes are key regulators of oxidative homeostasis in the CNS and astrocytic antioxidant responses promote the clearance of oxidants produced by neurons. Therefore, dysregulation of astrocyte physiology might largely contribute to oxidative damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is the main transcriptional regulator of cellular anti-oxidative stress responses. METHODS: In the current study, we hypothesized that astrocytic activation of Nrf2 protects the spinal cord post injury via suppression of neuroinflammation. Thus, using mice line with a GFAP-specific kelch-like ECH-associated protein 1 (Keap1)-deletion, we induced a hyperactivation of Nrf2 in astrocytes and further its effects on SCI outcomes. SCI-induction was performed in mice using the Infinite Horizon Spinal Cord Impactor with a force of 60 kdyn. To assess the quantitative pattern of Nrf2/ARE-activation, we included transgenic ARE-Luc mice. Data were analyzed with GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA, USA). Brown-Forsythe test was performed to test for equal variances and normal distribution was tested with Shapiro-Wilk. RESULTS: In ARE-Luc mice, a significant induction of luciferase-activity was observed as early as 1 day post-injury, indicating a functional role of Nrf2-activity at the epicenter of SCI. Furthermore, SCI induced loss of neurons and oligodendrocytes, demyelination and inflammation in wild type mice. The loss of myelin and oligodendrocytes was clearly reduced in Keap1 KO mice. In addition, Keap-1 KO mice showed a significantly better locomotor function and lower neuroinflammation responses compared to wild type mice. CONCLUSIONS: In summary, our in vivo bioluminescence data showed Nrf2-ARE activation during primary phase of SCI. Furthermore, we found that cell specific hyperactivation of Nrf2 was sufficient to protect the spinal cord against injury which indicate a promising therapeutic approach for SCI-treatment.


Subject(s)
Demyelinating Diseases , Spinal Cord Injuries , Animals , Male , Mice , Astrocytes/metabolism , Demyelinating Diseases/metabolism , Disease Models, Animal , Inflammation/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism
5.
Metab Brain Dis ; 35(2): 353-362, 2020 02.
Article in English | MEDLINE | ID: mdl-31529356

ABSTRACT

Oxidative stress is a pathophysiological hallmark of many CNS diseases, among multiple sclerosis (MS). Accordingly, boosting the astrocytic transcription factor nuclear factor E2-related factor 2 (Nrf2) system in an MS mouse model efficiently ameliorates oligodendrocyte loss, neuroinflammation and axonal damage. Moreover, Dimethylfumarate, an efficient activator of Nrf2, has recently been approved as therapeutic option in MS treatment. Here, we use the cuprizone mouse model of MS to induce oxidative stress, selective oligodendrocyte loss, microglia and astrocyte activation as well as axonal damage in both wild type and Nrf2-deficient mice. We found increased oligodendrocyte apoptosis and loss, pronounced neuroinflammation and higher levels of axonal damage in cuprizone-fed Nrf2-deficient animals when compared to wild type controls. In addition, Nrf2-deficient animals showed a higher susceptibility towards cuprizone within the commissura anterior white matter tract, a structure that is relatively insensitive to cuprizone in wild type animals. Our data highlight the cuprizone model as a suitable tool to study the complex interplay of oxidative stress, neuroinflammation and axonal damage. Further studies will have to show whether distinct expression patterns of Nrf2 are involved in the variable susceptibility towards cuprizone in the mouse.


Subject(s)
Axons/metabolism , Demyelinating Diseases/metabolism , Disease Models, Animal , Multiple Sclerosis/metabolism , NF-E2-Related Factor 2/deficiency , Oligodendroglia/metabolism , Animals , Axons/drug effects , Axons/pathology , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout , Multiple Sclerosis/chemically induced , Multiple Sclerosis/pathology , Oligodendroglia/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology
6.
Glia ; 67(2): 263-276, 2019 02.
Article in English | MEDLINE | ID: mdl-30511355

ABSTRACT

Oligodendrocytes are integral to efficient neuronal signaling. Loss of myelinating oligodendrocytes is a central feature of many neurological diseases, including multiple sclerosis (MS). The results of neuropathological studies suggest that oligodendrocytes react with differing sensitivity to toxic insults, with some cells dying early during lesion development and some cells being resistant for weeks. This proposed graded vulnerability has never been demonstrated but provides an attractive window for therapeutic interventions. Furthermore, the biochemical pathways associated with graded oligodendrocyte vulnerability have not been well explored. We used immunohistochemistry and serial block-face scanning electron microscopy (3D-SEM) to show that cuprizone-induced metabolic stress results in an "out of phase" degeneration of oligodendrocytes. Although expression induction of stress response transcription factors in oligodendrocytes occurs within days, subsequent oligodendrocyte apoptosis continues for weeks. In line with the idea of an out of phase degeneration of oligodendrocytes, detailed ultrastructural reconstructions of the axon-myelin unit demonstrate demyelination of single internodes. In parallel, genome wide array analyses revealed an active unfolded protein response early after initiation of the cuprizone intoxication. In addition to the cytoprotective pathways, the pro-apoptotic transcription factor DNA damage-inducible transcript 3 (DDIT3) was induced early in oligodendrocytes. In advanced lesions, DDIT3 was as well expressed by activated astrocytes. Toxin-induced oligodendrocyte apoptosis, demyelination, microgliosis, astrocytosis, and acute axonal damage were less intense in the Ddit3-null mutants. This study identifies DDIT3 as an important regulator of graded oligodendrocyte vulnerability in a MS animal model. Interference with this stress cascade might offer a promising therapeutic approach for demyelinating disorders.


Subject(s)
Demyelinating Diseases/pathology , Gene Expression Regulation/genetics , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Transcription Factor CHOP/metabolism , Animals , Animals, Newborn , Astrocytes/metabolism , Astrocytes/pathology , Calcium-Binding Proteins , Cells, Cultured , Corpus Callosum/metabolism , Corpus Callosum/pathology , Corpus Callosum/ultrastructure , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins , Microscopy, Electron, Scanning , Monoamine Oxidase Inhibitors/toxicity , Nerve Tissue Proteins/metabolism , Oligodendroglia/ultrastructure , Transcription Factor CHOP/genetics
7.
Int J Mol Sci ; 20(6)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871254

ABSTRACT

Ischemic stroke causes rapid hypoxic damage to the core neural tissue which is followed by graded chronological tissue degeneration in the peri-infarct zone. The latter process is mainly triggered by neuroinflammation, activation of inflammasomes, proinflammatory cytokines, and pyroptosis. Besides microglia, astrocytes play an important role in the fine-tuning of the inflammatory network in the brain. Lipocalin-2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. In this study, we analyzed LCN2 expression in hypoxic rat brain tissue after ischemic stroke and in astrocyte cell cultures receiving standardized hypoxic treatment. Whereas no LCN2-positive cells were seen in sham animals, the number of LCN2-positive cells (mainly astrocytes) was significantly increased after stroke. In vitro studies with hypoxic cultured astroglia revealed that LCN2 expression is significantly increased after only 2 h, then further increased, followed by a stepwise decline. The expression pattern of several proinflammatory cytokines mainly followed that profile in wild type (WT) but not in cultured LCN2-deficient astrocytes. Our data revealed that astrocytes are an important source of LCN2 in the peri-infarct region under hypoxic conditions. However, we must also stress that brain-intrinsic LCN2 after the initial hypoxia period might come from other sources such as invaded immune cells and peripheral organs via blood circulation. In any case, secreted LCN2 might have an influence on peripheral organ functions and the innate immune system during brain hypoxia.


Subject(s)
Astrocytes/metabolism , Brain Ischemia/metabolism , Hypoxia/metabolism , Lipocalin-2/metabolism , Stroke/metabolism , Animals , Brain/metabolism , Cytokines/metabolism , Immunity, Innate/physiology , Inflammation/metabolism , Male , Microglia/metabolism , Rats , Rats, Wistar
8.
J Neurochem ; 144(3): 285-301, 2018 02.
Article in English | MEDLINE | ID: mdl-29210072

ABSTRACT

The extent of remyelination in multiple sclerosis lesions is often incomplete. Injury to oligodendrocyte progenitor cells can be a contributing factor for such incomplete remyelination. The precise mechanisms underlying insufficient repair remain to be defined, but oxidative stress appears to be involved. Here, we used immortalized oligodendrocyte cell lines as model systems to investigate a causal relation of oxidative stress and endoplasmic reticulum stress signaling cascades. OLN93 and OliNeu cells were subjected to chemical hypoxia by blocking the respiratory chain at various levels. Mitochondrial membrane potential and oxidative stress levels were quantified by flow cytometry. Endoplasmic reticulum stress was monitored by the expression induction of activating transcription factor 3 and 4 (Atf3, Atf4), DNA damage-inducible transcript 3 protein (Ddit3), and glucose-regulated protein 94. Lentiviral silencing of nuclear factor (erythroid-derived 2)-like 2 or kelch-like ECH-associated protein 1 was applied to study the relevance of NRF2 for endoplasmic reticulum stress responses. We demonstrate that inhibition of the respiratory chain induces oxidative stress in cultured oligodendrocytes which is paralleled by the expression induction of distinct mediators of the endoplasmic reticulum stress response, namely Atf3, Atf4, and Ddit3. Atf3 and Ddit3 expression induction is potentiated in kelch-like ECH-associated protein 1-deficient cells and absent in cells lacking the oxidative stress-related transcription factor NRF2. This study provides strong evidence that oxidative stress in oligodendrocytes activates endoplasmic reticulum stress response in a NRF2-dependent manner and, in consequence, might regulate oligodendrocyte degeneration in multiple sclerosis and other neurological disorders.


Subject(s)
Endoplasmic Reticulum Stress , NF-E2-Related Factor 2/metabolism , Oligodendroglia/metabolism , Oxidative Stress , Activating Transcription Factor 3/metabolism , Animals , Cell Hypoxia , Cell Line , Electron Transport , Membrane Potential, Mitochondrial , Rats , Signal Transduction , Transcription Factor CHOP/metabolism
9.
J Neurosci ; 36(4): 1410-5, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26818526

ABSTRACT

Brain-intrinsic degenerative cascades have been proposed to be an initial factor driving lesion formation in multiple sclerosis (MS). Here, we identify neurodegeneration as a potent trigger for peripheral immune cell recruitment into the mouse forebrain. Female C57BL/6 mice were fed cuprizone for 3 weeks, followed by a period of 2 weeks on normal chow to induce the formation of lesion foci in the forebrain. Subsequent immunization with myelin oligodendrocyte glycoprotein 35-55 peptide, which induces myelin autoreactive T cells in the periphery, resulted in massive immune cell recruitment into the affected forebrain. Additional adoptive transfer experiments together with flow cytometry analysis underline the importance of brain-derived signals for immune cell recruitment. This study clearly illustrates the significance of brain-intrinsic degenerative cascades for immune cell recruitment and MS lesion formation. Additional studies have to address the signaling cascades and mechanistic processes that form the top-down communication between the affected brain area, neurovascular unit, and peripheral immune cells. SIGNIFICANCE STATEMENT: We identify neurodegeneration as a potent trigger for peripheral immune cell recruitment into the forebrain. Thus, immune cell recruitment might be a second step during the formation of new inflammatory lesions in multiple sclerosis. A better understanding of factors regulating neurodegeneration-induced immune cell recruitment will pave the way for the development of novel therapeutic treatment strategies.


Subject(s)
Lymphocytes/physiology , Monocytes/physiology , Neurodegenerative Diseases/pathology , Prosencephalon/pathology , Adoptive Transfer , Animals , CD3 Complex/metabolism , Calcium-Binding Proteins/metabolism , Chelating Agents/toxicity , Cuprizone/toxicity , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Freund's Adjuvant/toxicity , Lymph Nodes/pathology , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Myelin-Oligodendrocyte Glycoprotein/immunology , Neurodegenerative Diseases/chemically induced , Peptide Fragments/immunology , Pertussis Toxin/toxicity
10.
Glia ; 65(12): 1900-1913, 2017 12.
Article in English | MEDLINE | ID: mdl-28836302

ABSTRACT

Brain-intrinsic degenerative cascades are a proposed factor driving inflammatory lesion formation in multiple sclerosis (MS) patients. We recently described a model combining noninflammatory cytodegeneration (via cuprizone) with the classic active experimental autoimmune encephalomyelitis (Cup/EAE model), which exhibits inflammatory forebrain lesions. Here, we describe the histopathological characteristics and progression of these Cup/EAE lesions. We show that inflammatory lesions develop at various topographical sites in the forebrain, including white matter tracts and cortical and subcortical grey matter areas. The lesions are characterized by focal demyelination, discontinuation of the perivascular glia limitans, focal axonal damage, and neutrophil granulocyte extravasation. Transgenic mice with enhanced green fluorescent protein-expressing microglia and red fluorescent protein-expressing monocytes reveal that both myeloid cell populations contribute to forebrain inflammatory infiltrates. EAE-triggered inflammatory cerebellar lesions were augmented in mice pre-intoxicated with cuprizone. Gene expression studies suggest roles of the chemokines Cxcl10, Ccl2, and Ccl3 in inflammatory lesion formation. Finally, follow-up experiments in Cup/EAE mice with chronic disease revealed that forebrain, but not spinal cord, lesions undergo spontaneous reorganization and repair. This study underpins the significance of brain-intrinsic degenerative cascades for immune cell recruitment and, in consequence, MS lesion formation.


Subject(s)
Disease Progression , Encephalitis/etiology , Encephalitis/pathology , Encephalomyelitis, Autoimmune, Experimental/complications , Sesquiterpenes/toxicity , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Encephalitis/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Freund's Adjuvant/toxicity , Gene Expression/drug effects , Gene Expression/genetics , Glial Fibrillary Acidic Protein/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/pathology , Microglia/ultrastructure , Monocytes/pathology , Monocytes/ultrastructure , Myelin-Oligodendrocyte Glycoprotein/immunology , Myelin-Oligodendrocyte Glycoprotein/toxicity , Peptide Fragments/immunology , Peptide Fragments/toxicity , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism
11.
J Immunol ; 194(7): 3400-13, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25725102

ABSTRACT

A broad spectrum of diseases is characterized by myelin abnormalities and/or oligodendrocyte pathology. In most, if not all, of these diseases, early activation of microglia occurs. Our knowledge regarding the factors triggering early microglia activation is, however, incomplete. In this study, we used the cuprizone model to investigate the temporal and causal relationship of oligodendrocyte apoptosis and early microglia activation. Genome-wide gene expression studies revealed the induction of distinct chemokines, among them Cxcl10, Ccl2, and Ccl3 in cuprizone-mediated oligodendrocyte apoptosis. Early microglia activation was unchanged in CCL2- and CCL3-deficient knockouts, but was significantly reduced in CXCL10-deficient mice, resulting in an amelioration of cuprizone toxicity at later time points. Subsequent in vitro experiments revealed that recombinant CXCL10 induced migration and a proinflammatory phenotype in cultured microglia, without affecting their phagocytic activity or proliferation. In situ hybridization analyses suggest that Cxcl10 mRNA is mainly expressed by astrocytes, but also oligodendrocytes, in short-term cuprizone-exposed mice. Our results show that CXCL10 actively participates in the initiation of microglial activation. These findings have implications for the role of CXCL10 as an important mediator during the initiation of neuroinflammatory processes associated with oligodendrocyte pathology.


Subject(s)
Chemokine CXCL10/genetics , Cuprizone/pharmacology , Microglia/drug effects , Microglia/metabolism , Animals , Astrocytes/metabolism , Cell Movement/genetics , Cell Movement/immunology , Chemokines/genetics , Chemokines/metabolism , Cuprizone/administration & dosage , Demyelinating Diseases/drug therapy , Demyelinating Diseases/genetics , Demyelinating Diseases/immunology , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Gene Expression , Gene Expression Profiling , Immunohistochemistry , Lactate Dehydrogenases/metabolism , Mice , Mice, Knockout , Microglia/immunology , Oligodendroglia/drug effects , Oligodendroglia/immunology , Oligodendroglia/metabolism , Phagocytosis/genetics , Phagocytosis/immunology , Rats
12.
Metab Brain Dis ; 31(2): 425-33, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26725831

ABSTRACT

Chronic demyelination and plaque formation in multiple sclerosis is accompanied by persisting astrogliosis, negatively influencing central nervous system recovery and remyelination. Triiodothyronin (T3) is thought to enhance remyelination in the adult brain by the induction of oligodendrocyte maturation. We investigated additional astrocyte-mediated mechanisms by which T3 might promote remyelination in chronically demyelinated lesions using the cuprizone mouse model. C57BL/6 mice were fed cuprizone for 12 weeks to induce lesions with an impaired remyelination capacity. While the expression of oligodenrocyte progenitor markers, i.e., platelet derived growth factor-α receptor was not affected by T3 administration, myelination status, myelin protein expression as well as total and adult oligodendrocyte numbers were markedly increased compared to cuprizone treated controls. In addition to these effects on oligodendrocyte numbers and function, astrogliosis but not microgliosis was ameliorated by T3 administration. Intermediate filament proteins vimentin and nestin as well as the extracellular matrix component tenascin C were significantly reduced after T3 exposure, indicating additional effects of T3 on astrocytes and astrogliosis. Our data clearly indicate that T3 promotes remyelination in chronic lesions by both enhancing oligodendrocyte maturation and attenuating astrogliosis.


Subject(s)
Brain/drug effects , Demyelinating Diseases/drug therapy , Myelin Proteins/metabolism , Myelin Sheath/drug effects , Oligodendroglia/drug effects , Triiodothyronine/pharmacology , Animals , Brain/metabolism , Cuprizone , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Disease Models, Animal , Gliosis/metabolism , Male , Mice, Inbred C57BL , Myelin Sheath/metabolism , Oligodendroglia/metabolism
13.
Clin Sci (Lond) ; 129(12): 989-99, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26386022

ABSTRACT

The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a major regulator of oxidative stress defence in the human body. As Nrf2 regulates the expression of a large battery of cytoprotective genes, it plays a crucial role in the prevention of degenerative disease in multiple organs. Thus it has been the focus of research as a pharmacological target that could be used for prevention and treatment of chronic diseases such as multiple sclerosis, chronic kidney disease or cardiovascular diseases. The present review summarizes promising findings from basic research and shows which Nrf2-targeting therapies are currently being investigated in clinical trials and which agents have already entered clinical practice.


Subject(s)
NF-E2-Related Factor 2/metabolism , Oxidative Stress , Signal Transduction , Animals , Antioxidants/pharmacology , Drug Discovery , Gene Expression Regulation , Humans , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Liver Diseases/drug therapy , Liver Diseases/metabolism , Lung Diseases/drug therapy , Lung Diseases/metabolism , Molecular Targeted Therapy , NF-E2-Related Factor 2/agonists , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects
14.
Cell Mol Neurobiol ; 33(8): 1087-98, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23979168

ABSTRACT

Cuprizone [bis(cyclohexylidenehydrazide)]-induced toxic demyelination is an experimental approach frequently used to study de- and re-myelination in the central nervous system. In this model, mice are fed with the copper chelator cuprizone which leads to oligodendrocyte apoptosis and subsequent microgliosis, astrocytosis, and demyelination. The underlying mechanisms of cuprizone-induced oligodendrocyte death are still unknown. We analysed differences in amino acid levels after short-term cuprizone exposure (i.e., 4 days). Furthermore, an amino acid response (AAR) pathway activated in oligodendrocytes after cuprizone intoxication was evaluated. Short-term cuprizone exposure resulted in a selective decrease of alanine, glycine, and proline plasma levels, which was paralleled by an increase of apoptotic cells in the liver and a decrease of alanine aminotransferase in the serum. These parameters were paralleled by oligodendrocyte apoptosis and the induction of an AAR with increased expression of the transcription factors ATF-3 and ATF-4 (activating transcription factor-3 and -4). Immunohistochemistry revealed that ATF-3 is exclusively expressed by oligodendrocytes and localized to the nuclear compartment. Our results suggest that cuprizone-induced liver dysfunction results in amino acid starvation and in consequence to the activation of an AAR. We propose that this stress response modulates oligodendrocyte viability in the cuprizone animal model.


Subject(s)
Cuprizone/toxicity , Feeding Behavior , Oligodendroglia/metabolism , Oligodendroglia/pathology , Stress, Physiological/drug effects , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Amino Acids/blood , Amino Acids/deficiency , Animals , Corpus Callosum/drug effects , Corpus Callosum/metabolism , Corpus Callosum/pathology , Cuprizone/administration & dosage , Male , Mice , Mice, Inbred C57BL , Myelin and Lymphocyte-Associated Proteolipid Proteins/metabolism , Myelin-Associated Glycoprotein/metabolism , Oligodendroglia/drug effects , Time Factors
15.
GMS J Med Educ ; 40(4): Doc50, 2023.
Article in English | MEDLINE | ID: mdl-37560040

ABSTRACT

Objectives: In the early phase of their studies, students are confronted with a number of teaching and learning methods they are usually not familiar with. Beyond, learning in a university environment requires a high degree of self-organization. Thus, the transition from learning in a school environment to university can be challenging for students and associated with adjustment difficulties. We hypothesized that synchronous online lecturing might be able to serve as a thematic superstructure and a curricular guide that can positively influence course perception, motivation and exam outcome. Methods: We investigated this hypothesis in a retrospective approach by comparing results from histology exams (2020 n=411, 2021 n= 423) and questionnaires for course evaluation received from medical and dentistry second semester students of the RWTH Aachen University, Germany, in 2020 (n=113 questionnaire participants) and 2021 (n=106 questionnaire participants). While in 2020, due to the Corona Pandemic, no synchronous online lectures were held, these were reintroduced in 2021. Results: Our results show several differences in between the two study cohorts. Most important findings include a significantly (p<0.001) lower number of students that failed to pass or withdrew from the exam in 2021, an increased motivation to deal with the learning content (p<0.001) and a higher perceived quality of the study materials (p<0.001) in 2021. Conclusion: Our study indicates that synchronous online lectures can be an important tool to help students to accustom to new learning environments and to structure private study. Further studies will now have to show whether live (online) lectures can have the same significance during clinical training.


Subject(s)
Learning , Students , Humans , Retrospective Studies , Surveys and Questionnaires , Perception
16.
Glia ; 60(10): 1468-80, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22689449

ABSTRACT

In multiple sclerosis (MS), gray matter pathology is characterized by less pronounced inflammation when compared with white matter lesions. Although regional differences in the cytoarchitecture may account for these differences, the amount of myelin debris in the cortex during a demyelinating event might also be contributory. To analyze the association between myelin debris levels and inflammatory responses, cortical areas with distinct and sparse myelination were analyzed for micro- and astrogliosis before and after cuprizone-induced demyelination in mice. In postmortem tissue of MS patients, leucocortical lesions were assessed for the type and level of inflammation in the cortical and white matter regions of the lesion. Furthermore, mice were injected intracerebrally with myelin-enriched debris, and the inflammatory response analyzed in white and grey matter areas. Our studies show that the magnitude of myelin loss positively correlates with microgliosis in the cuprizone model. In MS, the number of MHC class II expressing cells is higher in the white compared with the grey matter part of leucocortical lesions. Finally, direct application of myelin debris into the corpus callosum or cortex of mice induces profound and comparable inflammation in both regions. Our data suggest that myelin debris is an important variable in the inflammatory response during demyelinating events. Whether myelin-driven inflammation affects neuronal integrity remains to be clarified.


Subject(s)
Encephalitis/etiology , Multiple Sclerosis/complications , Multiple Sclerosis/pathology , Myelin Sheath/metabolism , Nerve Fibers, Myelinated/pathology , Adult , Aged , Aged, 80 and over , Analysis of Variance , Animals , Calcium-Binding Proteins/metabolism , Chelating Agents/toxicity , Corpus Callosum/cytology , Cuprizone/toxicity , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Gliosis/etiology , Gliosis/metabolism , Histocompatibility Antigens Class II , Humans , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Microglia/pathology , Middle Aged , Multiple Sclerosis/chemically induced , Myelin Proteolipid Protein/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA, Messenger/metabolism
17.
Glia ; 60(3): 422-31, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22161990

ABSTRACT

Neuroaxonal degeneration is a pathological hallmark of multiple sclerosis (MS) contributing to irreversible neurological disability. Pathological mechanisms leading to axonal damage include autoimmunity to neuronal antigens. In actively demyelinating lesions, myelin is phagocytosed by microglia and blood-borne macrophages, whereas the fate of degenerating or damaged axons is unclear. Phagocytosis is essential for clearing neuronal debris to allow repair and regeneration. However, phagocytosis may lead to antigen presentation and autoimmunity, as has been described for neuroaxonal antigens. Despite this notion, it is unknown whether phagocytosis of neuronal antigens occurs in MS. Here, we show using novel, well-characterized antibodies to axonal antigens, that axonal damage is associated with HLA-DR expressing microglia/macrophages engulfing axonal bulbs, indicative of axonal damage. Neuronal proteins were frequently observed inside HLA-DR(+) cells in areas of axonal damage. In vitro, phagocytosis of neurofilament light (NF-L), present in white and gray matter, was observed in human microglia. The number of NF-L or myelin basic protein (MBP) positive cells was quantified using the mouse macrophage cell line J774.2. Intracellular colocalization of NF-L with the lysosomal membrane protein LAMP1 was observed using confocal microscopy confirming that NF-L is taken up and degraded by the cell. In vivo, NF-L and MBP was observed in cerebrospinal fluid cells from patients with MS, suggesting neuronal debris is drained by this route after axonal damage. In summary, neuroaxonal debris is engulfed, phagocytosed, and degraded by HLA-DR(+) cells. Although uptake is essential for clearing neuronal debris, phagocytic cells could also play a role in augmenting autoimmunity to neuronal antigens.


Subject(s)
Microglia/physiology , Multiple Sclerosis/pathology , Neurons/pathology , Phagocytosis/physiology , Adult , Aged , Aged, 80 and over , Animals , Cathepsin D/pharmacology , Cathepsins/pharmacology , Cells, Cultured , Dose-Response Relationship, Drug , Female , HLA-DR Antigens/metabolism , Humans , Male , Mice , Microglia/drug effects , Microscopy, Confocal , Middle Aged , Multiple Sclerosis/cerebrospinal fluid , Myelin Basic Protein/cerebrospinal fluid , Myelin Basic Protein/metabolism , Nerve Fibers, Myelinated/metabolism , Nerve Fibers, Myelinated/pathology , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/drug effects , Neurofilament Proteins/metabolism , Neurons/drug effects , Phagocytosis/drug effects , Time Factors
18.
Brain Res ; 1763: 147446, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33766517

ABSTRACT

The activation of the CXCL12-CXCR4 signaling axis is implicated in the regulation of cell survival, proliferation, and mobilization of bone marrow stem cells into the injured site. We have shown in a previous study that intrathecal administration of CXCL12 reduces spinal cord tissue damage and neuroinflammation and provides functional improvement by reducing inflammasome activity and local inflammatory processes in an experimental spinal cord injury (SCI) rat model. Here, we aimed at investigating whether these neuroprotective effects rely on the control of CXCL12 signaling on microglial activation as microglia cells are known to be the primary immune cells of the brain. LPS induced the expression of the inflammasome components NLRP3, NLRC4 and ASC, the secretion of the cytokines IL-1b and IL-18 and the activation of caspase-1 protease in BV2 cells. Pre-treatment with CXCL12 significantly reduced LPS-induced IL-1b/IL-18 secretion and inflammasome induction. Our results also showed that CXCL12 can suppress caspase-1 activity, which leads to a decrease of SCI-related induction of active IL-1b.


Subject(s)
Chemokine CXCL12/pharmacology , Inflammasomes/antagonists & inhibitors , Animals , Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins/metabolism , Caspase 1/metabolism , Inflammasomes/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides , Mice , Microglia/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, CXCR4/metabolism
19.
Mol Neurobiol ; 58(11): 5907-5919, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34417948

ABSTRACT

Lipocalin 2 (LCN2), an immunomodulator, regulates various cellular processes such as iron transport and defense against bacterial infection. Under pathological conditions, LCN2 promotes neuroinflammation via the recruitment and activation of immune cells and glia, particularly microglia and astrocytes. Although it seems to have a negative influence on the functional outcome in spinal cord injury (SCI), the extent of its involvement in SCI and the underlying mechanisms are not yet fully known. In this study, using a SCI contusion mouse model, we first investigated the expression pattern of Lcn2 in different parts of the CNS (spinal cord and brain) and in the liver and its concentration in blood serum. Interestingly, we could note a significant increase in LCN2 throughout the whole spinal cord, in the brain, liver, and blood serum. This demonstrates the diversity of its possible sites of action in SCI. Furthermore, genetic deficiency of Lcn2 (Lcn2-/-) significantly reduced certain aspects of gliosis in the SCI-mice. Taken together, our studies provide first valuable hints, suggesting that LCN2 is involved in the local and systemic effects post SCI, and might modulate the impairment of different peripheral organs after injury.


Subject(s)
Lipocalin-2/physiology , Neuroinflammatory Diseases/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Astrocytes/metabolism , Brain/metabolism , Gene Expression Regulation , Gliosis/metabolism , Lipocalin-2/blood , Lipocalin-2/deficiency , Lipocalin-2/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/metabolism , Organ Specificity , Paraplegia/etiology , Paraplegia/physiopathology , RNA, Messenger/biosynthesis
20.
J Mol Neurosci ; 71(5): 933-942, 2021 May.
Article in English | MEDLINE | ID: mdl-32959226

ABSTRACT

The central nervous system (CNS) responds to diverse neurologic injuries with a vigorous activation of astrocytes. In addition to their role in the maintenance of CNS homeostasis and neuronal function, astrocytes are thought to participate in the regulation of innate and adaptive immune responses in the CNS. Following antigen recognition, reactive astrocytes may participate in the initiation of innate immune responses, and modulate adaptive immune response leading to the recruitment of peripheral immune cells. Among activation, astrocytes undergo morphological changes and express several molecules, e.g., chemokines. Lipocalin 2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. Here, we investigated the influence of LCN2 on basic astrocytic functions linked to inflammatory responses. In vitro studies revealed a similar chemokine expression pattern in wild-type and Lcn2-deficient astrocyte cultures after treatment with lipopolysaccharides (LPS). Increased wound closure and morphological changes upon LPS treatment are independent of Lcn2 expression. We conclude that LCN2 is not necessary for basic astrocytic functions in the context of inflammation. However, CNS-derived LCN2 might have a regulatory effect on other cells, e.g., endothelial cells of the blood-brain barrier.


Subject(s)
Astrocytes/metabolism , Lipocalin-2/metabolism , Animals , Astrocytes/drug effects , Astrocytes/physiology , Brain/cytology , Cell Movement , Cells, Cultured , Chemokines/genetics , Chemokines/metabolism , Lipocalin-2/genetics , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL