Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Genes Dev ; 37(3-4): 74-79, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36702483

ABSTRACT

Pol2 is the leading-strand DNA polymerase in budding yeast. Here we describe an antagonism between its conserved POPS (Pol2 family-specific catalytic core peripheral subdomain) and exonuclease domain and the importance of this antagonism in genome replication. We show that multiple defects caused by POPS mutations, including impaired growth and DNA synthesis, genome instability, and reliance on other genome maintenance factors, were rescued by exonuclease inactivation. Single-molecule data revealed that the rescue stemmed from allowing sister replication forks to progress at equal rates. Our data suggest that balanced activity of Pol2's POPS and exonuclease domains is vital for genome replication and stability.


Subject(s)
DNA Replication , Exonucleases , Humans , Exonucleases/genetics , Exonucleases/metabolism , DNA Replication/genetics , Mutation , Genomic Instability/genetics , DNA Polymerase II/genetics , DNA Polymerase II/metabolism
2.
Mol Cell ; 82(7): 1372-1382.e4, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35240057

ABSTRACT

Fundamental aspects of DNA replication, such as the anatomy of replication stall sites, how replisomes are influenced by gene transcription, and whether the progression of sister replisomes is coordinated, are poorly understood. Available techniques do not allow the precise mapping of the positions of individual replisomes on chromatin. We have developed a method called Replicon-seq that entails the excision of full-length replicons by controlled nuclease cleavage at replication forks. Replicons are sequenced using Nanopore, which provides a single-molecule readout of long DNA. Using Replicon-seq, we found that sister replisomes function autonomously and yet progress through chromatin with remarkable consistency. Replication forks that encounter obstacles pause for a short duration but rapidly resume synthesis. The helicase Rrm3 plays a critical role both in mitigating the effect of protein barriers and with facilitating efficient termination. Replicon-seq provides a high-resolution means of defining how individual replisomes move across the genome.


Subject(s)
DNA Helicases , DNA Replication , Chromatin/genetics , Chromosomes/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism
3.
PLoS Genet ; 12(7): e1006176, 2016 07.
Article in English | MEDLINE | ID: mdl-27428329

ABSTRACT

Most human somatic cells express insufficient levels of telomerase, which can result in telomere shortening and eventually senescence, both of which are hallmarks of ageing. Homology-directed repair (HDR) is important for maintaining proper telomere function in yeast and mammals. In Saccharomyces cerevisiae, Rad52 is required for almost all HDR mechanisms, and telomerase-null cells senesce faster in the absence of Rad52. However, its role in preventing accelerated senescence has been unclear. In this study, we make use of rad52 separation-of-function mutants to find that multiple Rad52-mediated HDR mechanisms are required to delay senescence, including break-induced replication and sister chromatid recombination. In addition, we show that misregulation of histone 3 lysine 56 acetylation, which is known to be defective in sister chromatid recombination, also causes accelerated senescence. We propose a model where Rad52 is needed to repair telomere attrition-induced replication stress.


Subject(s)
DNA Repair , Rad52 DNA Repair and Recombination Protein/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Telomere/ultrastructure , Chromatids/metabolism , Gene Expression Regulation, Fungal , Histones/chemistry , Lysine/chemistry , Microscopy, Fluorescence , Mutation , Plasmids/metabolism , Polymerase Chain Reaction , Rad52 DNA Repair and Recombination Protein/metabolism , Recombination, Genetic , Saccharomyces cerevisiae Proteins/metabolism , Sister Chromatid Exchange , Telomerase/genetics
4.
Mol Microbiol ; 89(6): 1053-68, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23859254

ABSTRACT

Bacillus subtilis sporulation depends on the forespore membrane protein SpoIIQ, which interacts with the mother cell protein SpoIIIAH at the septum to localize other sporulation proteins. It has remained unclear how SpoIIQ localizes. We demonstrate that localization of SpoIIQ is achieved by two pathways: SpoIIIAH and the SpoIID, SpoIIM, SpoIIP engulfment proteins. SpoIIQ shows diffuse localization only in a mutant lacking both pathways. Super-resolution imaging shows that in the absence of SpoIIIAH, SpoIIQ forms fewer, slightly larger foci than in wild type. Surprisingly, photobleaching experiments demonstrate that, although SpoIIQ localizes without SpoIIIAH, it is no longer immobilized, and is therefore able to exchange subunits within a localized pool. SpoIIQ mobility is further increased by the additional absence of the engulfment proteins. However an enzymatically inactive SpoIID protein immobilizes SpoIIQ even in the absence of SpoIIIAH, indicating that complete septal thinning is not required for SpoIIQ localization. This suggests that SpoIIQ interacts with both SpoIIIAH and the engulfment proteins or their peptidoglycan cleavage products. They further demonstrate that apparently normal localization of a protein without a binding partner can mask dramatic alterations in protein mobility. We speculate that SpoIIQ assembles foci along the path defined by engulfment proteins degrading peptidoglycan.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Wall/metabolism , Spores, Bacterial/metabolism , Bacillus subtilis/growth & development , Protein Binding , Protein Transport , Spores, Bacterial/growth & development
5.
Elife ; 62017 12 12.
Article in English | MEDLINE | ID: mdl-29231811

ABSTRACT

Homologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. We provide the first quantifiable evidence that most spontaneous SCE events in wild-type cells are not due to the repair of DNA double-strand breaks.


Subject(s)
Genome, Fungal , Molecular Biology/methods , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA/methods , Single-Cell Analysis/methods , Sister Chromatid Exchange
6.
PLoS One ; 11(3): e0151314, 2016.
Article in English | MEDLINE | ID: mdl-26974669

ABSTRACT

In cells lacking telomerase, telomeres shorten progressively during each cell division due to incomplete end-replication. When the telomeres become very short, cells enter a state that blocks cell division, termed senescence. A subset of these cells can overcome senescence and maintain their telomeres using telomerase-independent mechanisms. In Saccharomyces cerevisiae, these cells are called 'survivors' and are dependent on Rad52-dependent homologous recombination and Pol32-dependent break-induced replication. There are two main types of survivors: type I and type II. The type I survivors require Rad51 and maintain telomeres by amplification of subtelomeric elements, while the type II survivors are Rad51-independent, but require the MRX complex and Sgs1 to amplify the C1-3A/TG1-3 telomeric sequences. Rad52, Pol32, Rad51, and Sgs1 are also important to prevent accelerated senescence, indicating that recombination processes are important at telomeres even before the formation of survivors. The Shu complex, which consists of Shu1, Shu2, Psy3, and Csm2, promotes Rad51-dependent homologous recombination and has been suggested to be important for break-induced replication. It also promotes the formation of recombination intermediates that are processed by the Sgs1-Top3-Rmi1 complex, as mutations in the SHU genes can suppress various sgs1, top3, and rmi1 mutant phenotypes. Given the importance of recombination processes during senescence and survivor formation, and the involvement of the Shu complex in many of the same processes during DNA repair, we hypothesized that the Shu complex may also have functions at telomeres. Surprisingly, we find that this is not the case: the Shu complex does not affect the rate of senescence, does not influence survivor formation, and deletion of SHU1 does not suppress the rapid senescence and type II survivor formation defect of a telomerase-negative sgs1 mutant. Altogether, our data suggest that the Shu complex is not important for recombination processes at telomeres.


Subject(s)
Multiprotein Complexes/metabolism , Recombination, Genetic , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Telomere Homeostasis/genetics , Gene Deletion , Microbial Viability/genetics , Saccharomyces cerevisiae Proteins/genetics , Telomerase/metabolism
7.
Microb Cell ; 2(9): 308-321, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-28357308

ABSTRACT

The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB), which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have evolved mechanisms to repair DSBs such as homologous recombination (HR). HR-mediated repair of telomeres can lead to genome instability, a hallmark of cancer cells, which is why such repair is normally inhibited. However, some HR-mediated processes are required for proper telomere function. The need for some recombination activities at telomeres but not others necessitates careful and complex regulation, defects in which can lead to catastrophic consequences. Furthermore, some cell types can maintain telomeres via telomerase-independent, recombination-mediated mechanisms. In humans, these mechanisms are called alternative lengthening of telomeres (ALT) and are used in a subset of human cancer cells. In this review, we summarize the different recombination activities occurring at telomeres and discuss how they are regulated. Much of the current knowledge is derived from work using yeast models, which is the focus of this review, but relevant studies in mammals are also included.

8.
J Med Chem ; 56(6): 2246-55, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23437776

ABSTRACT

Insulin-degrading enzyme (IDE) is an atypical zinc-metallopeptidase that degrades insulin and the amyloid ß-protein and is strongly implicated in the pathogenesis of diabetes and Alzheimer's disease. We recently developed the first effective inhibitors of IDE, peptide hydroxamates that, while highly potent and selective, are relatively large (MW > 740) and difficult to synthesize. We present here a facile synthetic route that yields enantiomerically pure derivatives comparable in potency to the parent compounds. Through the generation of truncated variants, we identified a compound with significantly reduced size (MW = 455.5) that nonetheless retains good potency (ki = 78 ± 11 nM) and selectivity for IDE. Notably, the potency of these inhibitors was found to vary as much as 60-fold in a substrate-specific manner, an unexpected finding for active site-directed inhibitors. Collectively, our findings demonstrate that potent, small-molecule IDE inhibitors can be developed that, in certain instances, can be highly substrate selective.


Subject(s)
Drug Design , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Insulysin/antagonists & inhibitors , Insulysin/metabolism , Peptides/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/metabolism , Insulysin/chemistry , Molecular Docking Simulation , Protein Conformation , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL