Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nanoscale ; 15(19): 8740-8753, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37097471

ABSTRACT

Gold nanoparticles (GNPs) are considered promising candidates for healthcare applications, however, their toxicity after long-term exposure to the material remains uncertain. Since the liver is the main filter organ for nanomaterials, this work was aimed at evaluating hepatic accumulation, internalisation and overall safety of well-characterised and endotoxin-free GNPs in healthy mice from 15 minutes to 7 weeks after a single administration. Our data demonstrate that GNPs were rapidly segregated into lysosomes of endothelial cells (LSEC) or Kupffer cells regardless of coating or shape but with different kinetics. Despite the long-lasting accumulation in tissues, the safety of GNPs was confirmed by liver enzymatic levels, as they were rapidly eliminated from the blood circulation and accumulated in the liver without inducing hepatic toxicity. Our results demonstrate that GNPs have a safe and biocompatibile profile despite their long-term accumulation.


Subject(s)
Gold , Metal Nanoparticles , Mice , Animals , Gold/toxicity , Endothelial Cells , Metal Nanoparticles/toxicity , Liver , Kupffer Cells
2.
J Colloid Interface Sci ; 613: 563-574, 2022 May.
Article in English | MEDLINE | ID: mdl-35066229

ABSTRACT

HYPOTHESIS: Following blood administration, the pristine surface of nanoparticles (NPs) associates with biomolecules from the surrounding environment forming the so-called "biomolecular corona". It is well accepted that the biomolecular corona dramatically affects the NP fate in the biological medium while the pristine surface is no longer available for binding. Recent studies have shown that the glycans associated with the proteins forming the corona have a role in the NP interaction with macrophages, but the glycan identities remain unknown. We aim here to identify the glycan composition of the biomolecular corona and to assess the role of these glycans in the interaction of the proteins from the corona with glycan binding biomolecules, such as lectins. EXPERIMENTS: In this study, we have characterized the biomolecular corona of citrate stabilised gold NPs after exposure of the NPs to blood plasma at two different plasma concentrations, mimicking the in vitro and in vivo conditions. We have extensively characterized the biomolecular corona using HILIC chromatography and shotgun proteomics. Following this, a lectin binding assay was carried out using Dynamic Light Scattering (DLS) and Fluorescence Correlation Spectroscopy (FCS) to assess whether proteins with known affinity towards specific glycans would bind to the corona. FINDINGS: Our findings highlighted that the protein corona composition is dependent on the exposing conditions. However, under both plasma concentrations, the biantennary sialylated glycans (A2G2S2) are enriched. DLS and FCS confirmed that the glycans are accessible for binding as the corona interacts with lectins with known affinity towards terminal sialic acids and the enzymatic removal of the glycans leads to a decrease in lectin affinity. This study shows for the first time that the glycans are present in the corona and that they could potentially be responsible for the modulation of NP biological processes as they can directly engage with glycan binding receptors that are highly expressed in an organism.


Subject(s)
Nanoparticles , Protein Corona , Polysaccharides , Proteins , Spectrometry, Fluorescence
3.
Environ Sci Technol ; 45(5): 1880-6, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21288020

ABSTRACT

The gas-phase atmospheric degradation of chlorpyrifos-methyl (a widely used organophosphate insecticide in Southern European regions) has been investigated at the large outdoor European Photoreactor (EUPHORE) in Valencia, Spain. Photolysis under sunlight conditions and reaction with ozone were shown to be unimportant. The rate constant for reaction of chlorpyrifos-methyl with OH radicals was measured using a conventional relative rate method with cyclohexane and n-octane employed as reference compounds with k = (4.1 ± 0.4) × 10(-11) cm(3) molecule(-1) s(-1) at 300 ± 5 K and atmospheric pressure. The available evidence indicates that tropospheric degradation of chlorpyrifos-methyl is mainly controlled by reaction with OH radicals and that the tropospheric lifetime is estimated to be around 3.5 h. Significant aerosol formation was observed following the reaction of chlorpyrifos-methyl with OH radicals, and the main carbon-containing products detected in the gas phase were chlorpyrifos-methyl oxone and 3,5,6-trichloro-2-pyridinol.


Subject(s)
Air Pollutants/chemistry , Atmosphere/chemistry , Chlorpyrifos/analogs & derivatives , Insecticides/chemistry , Chlorpyrifos/chemistry , Environmental Monitoring , Hydroxyl Radical/chemistry , Kinetics , Molecular Weight , Photolysis , Sunlight , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL