Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Mol Cell ; 82(3): 598-615.e8, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34998453

ABSTRACT

An increasing number of genetic diseases are linked to deregulation of E3 ubiquitin ligases. Loss-of-function mutations in the RING-between-RING (RBR) family E3 ligase RNF216 (TRIAD3) cause Gordon-Holmes syndrome (GHS) and related neurodegenerative diseases. Functionally, RNF216 assembles K63-linked ubiquitin chains and has been implicated in regulation of innate immunity signaling pathways and synaptic plasticity. Here, we report crystal structures of key RNF216 reaction states including RNF216 in complex with ubiquitin and its reaction product, K63 di-ubiquitin. Our data provide a molecular explanation for chain-type specificity and reveal the molecular basis for disruption of RNF216 function by pathogenic GHS mutations. Furthermore, we demonstrate how RNF216 activity and chain-type specificity are regulated by phosphorylation and that RNF216 is allosterically activated by K63-linked di-ubiquitin. These molecular insights expand our understanding of RNF216 function and its role in disease and further define the mechanistic diversity of the RBR E3 ligase family.


Subject(s)
Cerebellar Ataxia/enzymology , Gonadotropin-Releasing Hormone/deficiency , Hypogonadism/enzymology , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/metabolism , Allosteric Regulation , Binding Sites , Catalysis , Cerebellar Ataxia/genetics , Crystallography, X-Ray , Genetic Predisposition to Disease , Gonadotropin-Releasing Hormone/genetics , HEK293 Cells , Humans , Hypogonadism/genetics , Loss of Function Mutation , Lysine , Models, Molecular , Phenotype , Phosphorylation , Protein Binding , Protein Conformation , Structure-Activity Relationship , Ubiquitin-Protein Ligases/genetics , Ubiquitination
2.
Nature ; 602(7896): 328-335, 2022 02.
Article in English | MEDLINE | ID: mdl-34933320

ABSTRACT

Mutations in the protein kinase PINK1 lead to defects in mitophagy and cause autosomal recessive early onset Parkinson's disease1,2. PINK1 has many unique features that enable it to phosphorylate ubiquitin and the ubiquitin-like domain of Parkin3-9. Structural analysis of PINK1 from diverse insect species10-12 with and without ubiquitin provided snapshots of distinct structural states yet did not explain how PINK1 is activated. Here we elucidate the activation mechanism of PINK1 using crystallography and cryo-electron microscopy (cryo-EM). A crystal structure of unphosphorylated Pediculus humanus corporis (Ph; human body louse) PINK1 resolves an N-terminal helix, revealing the orientation of unphosphorylated yet active PINK1 on the mitochondria. We further provide a cryo-EM structure of a symmetric PhPINK1 dimer trapped during the process of trans-autophosphorylation, as well as a cryo-EM structure of phosphorylated PhPINK1 undergoing a conformational change to an active ubiquitin kinase state. Structures and phosphorylation studies further identify a role for regulatory PINK1 oxidation. Together, our research delineates the complete activation mechanism of PINK1, illuminates how PINK1 interacts with the mitochondrial outer membrane and reveals how PINK1 activity may be modulated by mitochondrial reactive oxygen species.


Subject(s)
Insect Proteins , Pediculus , Protein Kinases , Animals , Cryoelectron Microscopy , Insect Proteins/metabolism , Mitochondria , Mitophagy , Phosphorylation , Protein Conformation , Protein Kinases/metabolism , Ubiquitin/metabolism
4.
Mol Syst Biol ; 17(4): e10023, 2021 04.
Article in English | MEDLINE | ID: mdl-33821563

ABSTRACT

The malaria parasite, Plasmodium falciparum, proliferates rapidly in human erythrocytes by actively scavenging multiple carbon sources and essential nutrients from its host cell. However, a global overview of the metabolic capacity of intraerythrocytic stages is missing. Using multiplex 13 C-labelling coupled with untargeted mass spectrometry and unsupervised isotopologue grouping, we have generated a draft metabolome of P. falciparum and its host erythrocyte consisting of 911 and 577 metabolites, respectively, corresponding to 41% of metabolites and over 70% of the metabolic reaction predicted from the parasite genome. An additional 89 metabolites and 92 reactions were identified that were not predicted from genomic reconstructions, with the largest group being associated with metabolite damage-repair systems. Validation of the draft metabolome revealed four previously uncharacterised enzymes which impact isoprenoid biosynthesis, lipid homeostasis and mitochondrial metabolism and are necessary for parasite development and proliferation. This study defines the metabolic fate of multiple carbon sources in P. falciparum, and highlights the activity of metabolite repair pathways in these rapidly growing parasite stages, opening new avenues for drug discovery.


Subject(s)
Isotope Labeling , Metabolic Networks and Pathways , Metabolomics , Parasites/metabolism , Plasmodium falciparum/metabolism , Animals , Electron Transport , Erythrocytes/parasitology , Glycine Hydroxymethyltransferase/metabolism , Hemoglobins/metabolism , Humans , Metabolic Flux Analysis , Metabolome , Mitochondria/metabolism , Parasites/growth & development , Phosphoprotein Phosphatases/metabolism , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism , Serine/metabolism , Terpenes/metabolism , Trophozoites/metabolism
5.
PLoS Biol ; 17(7): e3000376, 2019 07.
Article in English | MEDLINE | ID: mdl-31318858

ABSTRACT

Apicomplexan parasites possess a plastid organelle called the apicoplast. Inhibitors that selectively target apicoplast housekeeping functions, including DNA replication and protein translation, are lethal for the parasite, and several (doxycycline, clindamycin, and azithromycin) are in clinical use as antimalarials. A major limitation of such drugs is that treated parasites only arrest one intraerythrocytic development cycle (approximately 48 hours) after treatment commences, a phenotype known as the 'delayed death' effect. The molecular basis of delayed death is a long-standing mystery in parasitology, and establishing the mechanism would aid rational clinical implementation of apicoplast-targeted drugs. Parasites undergoing delayed death transmit defective apicoplasts to their daughter cells and cannot produce the sole, blood-stage essential metabolic product of the apicoplast: the isoprenoid precursor isopentenyl-pyrophosphate. How the isoprenoid precursor depletion kills the parasite remains unknown. We investigated the requirements for the range of isoprenoids in the human malaria parasite Plasmodium falciparum and characterised the molecular and morphological phenotype of parasites experiencing delayed death. Metabolomic profiling reveals disruption of digestive vacuole function in the absence of apicoplast derived isoprenoids. Three-dimensional electron microscopy reveals digestive vacuole fragmentation and the accumulation of cytostomal invaginations, characteristics common in digestive vacuole disruption. We show that digestive vacuole disruption results from a defect in the trafficking of vesicles to the digestive vacuole. The loss of prenylation of vesicular trafficking proteins abrogates their membrane attachment and function and prevents the parasite from feeding. Our data show that the proximate cause of delayed death is an interruption of protein prenylation and consequent cellular trafficking defects.


Subject(s)
Apicoplasts/metabolism , Intracellular Space/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Antimalarials/pharmacology , Cell Death/drug effects , Hemiterpenes/metabolism , Hemiterpenes/pharmacology , Humans , Intracellular Space/drug effects , Intracellular Space/parasitology , Malaria, Falciparum/parasitology , Metabolomics/methods , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/physiology , Protein Prenylation/drug effects , Protein Transport/drug effects , Vacuoles/drug effects , Vacuoles/metabolism , Vacuoles/parasitology
6.
PLoS Biol ; 16(3): e2004328, 2018 03.
Article in English | MEDLINE | ID: mdl-29529020

ABSTRACT

Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to-or is selected by-this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to-or are selected by-the host environment in severe malaria.


Subject(s)
Antigens, Protozoan/genetics , Antigens, Surface/genetics , Malaria/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Transcriptome , Gene Expression Regulation , Humans , Malaria/pathology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/metabolism , Sequence Analysis, RNA
7.
Biochem J ; 476(22): 3435-3453, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31675053

ABSTRACT

Key physiological differences between bacterial and mammalian metabolism provide opportunities for the development of novel antimicrobials. We examined the role of the multifunctional enzyme S-adenosylhomocysteine/Methylthioadenosine (SAH/MTA) nucleosidase (Pfs) in the virulence of S. enterica var Typhimurium (S. Typhimurium) in mice, using a defined Pfs deletion mutant (i.e. Δpfs). Pfs was essential for growth of S. Typhimurium in M9 minimal medium, in tissue cultured cells, and in mice. Studies to resolve which of the three known functions of Pfs were key to murine virulence suggested that downstream production of autoinducer-2, spermidine and methylthioribose were non-essential for Salmonella virulence in a highly sensitive murine model. Mass spectrometry revealed the accumulation of SAH in S. Typhimurium Δpfs and complementation of the Pfs mutant with the specific SAH hydrolase from Legionella pneumophila reduced SAH levels, fully restored growth ex vivo and the virulence of S. Typhimurium Δpfs for mice. The data suggest that Pfs may be a legitimate target for antimicrobial development, and that the key role of Pfs in bacterial virulence may be in reducing the toxic accumulation of SAH which, in turn, suppresses an undefined methyltransferase.


Subject(s)
Bacterial Proteins/metabolism , N-Glycosyl Hydrolases/metabolism , Purine-Nucleoside Phosphorylase/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/enzymology , Salmonella typhimurium/pathogenicity , Animals , Bacterial Proteins/genetics , Female , Gene Expression Regulation, Bacterial , Humans , Male , Mice , Mice, Inbred C57BL , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , N-Glycosyl Hydrolases/genetics , Purine-Nucleoside Phosphorylase/genetics , S-Adenosylhomocysteine/metabolism , Salmonella typhimurium/genetics , Virulence
8.
J Biol Chem ; 293(24): 9506-9519, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29720401

ABSTRACT

Methionine (Met) is an amino acid essential for many important cellular and biosynthetic functions, including the initiation of protein synthesis and S-adenosylmethionine-mediated methylation of proteins, RNA, and DNA. The de novo biosynthetic pathway of Met is well conserved across prokaryotes but absent from vertebrates, making it a plausible antimicrobial target. Using a systematic approach, we examined the essentiality of de novo methionine biosynthesis in Salmonella enterica serovar Typhimurium, a bacterial pathogen causing significant gastrointestinal and systemic diseases in humans and agricultural animals. Our data demonstrate that Met biosynthesis is essential for S. Typhimurium to grow in synthetic medium and within cultured epithelial cells where Met is depleted in the environment. During systemic infection of mice, the virulence of S. Typhimurium was not affected when either de novo Met biosynthesis or high-affinity Met transport was disrupted alone, but combined disruption in both led to severe in vivo growth attenuation, demonstrating a functional redundancy between de novo biosynthesis and acquisition as a mechanism of sourcing Met to support growth and virulence for S. Typhimurium during infection. In addition, our LC-MS analysis revealed global changes in the metabolome of S. Typhimurium mutants lacking Met biosynthesis and also uncovered unexpected interactions between Met and peptidoglycan biosynthesis. Together, this study highlights the complexity of the interactions between a single amino acid, Met, and other bacterial processes leading to virulence in the host and indicates that disrupting the de novo biosynthetic pathway alone is likely to be ineffective as an antimicrobial therapy against S. Typhimurium.


Subject(s)
Methionine/metabolism , Salmonella Infections/metabolism , Salmonella typhimurium/growth & development , Salmonella typhimurium/pathogenicity , Animals , Biological Transport , Biosynthetic Pathways , Female , HeLa Cells , Humans , Male , Metabolome , Mice , Mice, Inbred C57BL , Salmonella typhimurium/metabolism , Virulence
9.
PLoS Pathog ; 13(2): e1006180, 2017 02.
Article in English | MEDLINE | ID: mdl-28178359

ABSTRACT

In this study the 'Malaria Box' chemical library comprising 400 compounds with antiplasmodial activity was screened for compounds that perturb the internal pH of the malaria parasite, Plasmodium falciparum. Fifteen compounds induced an acidification of the parasite cytosol. Two of these did so by inhibiting the parasite's formate nitrite transporter (PfFNT), which mediates the H+-coupled efflux from the parasite of lactate generated by glycolysis. Both compounds were shown to inhibit lactate transport across the parasite plasma membrane, and the transport of lactate by PfFNT expressed in Xenopus laevis oocytes. PfFNT inhibition caused accumulation of lactate in parasitised erythrocytes, and swelling of both the parasite and parasitised erythrocyte. Long-term exposure of parasites to one of the inhibitors gave rise to resistant parasites with a mutant form of PfFNT that showed reduced inhibitor sensitivity. This study provides the first evidence that PfFNT is a druggable antimalarial target.


Subject(s)
Antimalarials/pharmacology , Erythrocytes/parasitology , Malaria, Falciparum/metabolism , Monocarboxylic Acid Transporters/drug effects , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Biological Transport/drug effects , Chromatography, Liquid , Drug Evaluation, Preclinical , Humans , Malaria, Falciparum/parasitology , Mass Spectrometry , Plasmodium falciparum/metabolism , Plasmodium falciparum/parasitology , Protozoan Proteins/metabolism , Xenopus laevis
10.
Cell Microbiol ; 18(6): 820-30, 2016 06.
Article in English | MEDLINE | ID: mdl-26633083

ABSTRACT

Human erythrocytes have an active nitric oxide synthase, which converts arginine into citrulline and nitric oxide (NO). NO serves several important functions, including the maintenance of normal erythrocyte deformability, thereby ensuring efficient passage of the red blood cell through narrow microcapillaries. Here, we show that following invasion by the malaria parasite Plasmodium falciparum the arginine pool in the host erythrocyte compartment is sequestered and metabolized by the parasite. Arginine from the extracellular medium enters the infected cell via endogenous host cell transporters and is taken up by the intracellular parasite by a high-affinity cationic amino acid transporter at the parasite surface. Within the parasite arginine is metabolized into citrulline and ornithine. The uptake and metabolism of arginine by the parasite deprive the erythrocyte of the substrate required for NO production and may contribute to the decreased deformability of infected erythrocytes.


Subject(s)
Arginine/metabolism , Erythrocytes/parasitology , Plasmodium falciparum/pathogenicity , Adenosine Triphosphate/metabolism , Erythrocytes/metabolism , Host-Parasite Interactions , Humans
11.
PLoS Genet ; 10(1): e1004085, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24391526

ABSTRACT

Drug resistant strains of the malaria parasite, Plasmodium falciparum, have rendered chloroquine ineffective throughout much of the world. In parts of Africa and Asia, the coordinated shift from chloroquine to other drugs has resulted in the near disappearance of chloroquine-resistant (CQR) parasites from the population. Currently, there is no molecular explanation for this phenomenon. Herein, we employ metabolic quantitative trait locus mapping (mQTL) to analyze progeny from a genetic cross between chloroquine-susceptible (CQS) and CQR parasites. We identify a family of hemoglobin-derived peptides that are elevated in CQR parasites and show that peptide accumulation, drug resistance, and reduced parasite fitness are all linked in vitro to CQR alleles of the P. falciparum chloroquine resistance transporter (pfcrt). These findings suggest that CQR parasites are less fit because mutations in pfcrt interfere with hemoglobin digestion by the parasite. Moreover, our findings may provide a molecular explanation for the reemergence of CQS parasites in wild populations.


Subject(s)
Chloroquine/therapeutic use , Hemoglobins/metabolism , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Quantitative Trait Loci/genetics , Antimalarials/therapeutic use , Chromosome Mapping , Drug Resistance/genetics , Hemoglobins/genetics , Humans , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Metabolism/genetics , Peptides/genetics , Peptides/isolation & purification , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
12.
J Infect Dis ; 213(2): 276-86, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26150544

ABSTRACT

Detailed information on the mode of action of antimalarial drugs can be used to improve existing drugs, identify new drug targets, and understand the basis of drug resistance. In this study we describe the use of a time-resolved, mass spectrometry (MS)-based metabolite profiling approach to map the metabolic perturbations induced by a panel of clinical antimalarial drugs and inhibitors on Plasmodium falciparum asexual blood stages. Drug-induced changes in metabolite levels in P. falciparum-infected erythrocytes were monitored over time using gas chromatography-MS and liquid chromatography-MS and changes in specific metabolic fluxes confirmed by nonstationary [(13)C]-glucose labeling. Dihydroartemisinin (DHA) was found to disrupt hemoglobin catabolism within 1 hour of exposure, resulting in a transient decrease in hemoglobin-derived peptides. Unexpectedly, it also disrupted pyrimidine biosynthesis, resulting in increased [(13)C]-glucose flux toward malate production, potentially explaining the susceptibility of P. falciparum to DHA during early blood-stage development. Unique metabolic signatures were also found for atovaquone, chloroquine, proguanil, cycloguanil and methylene blue. We also show that this approach can be used to identify the mode of action of novel antimalarials, such as the compound Torin 2, which inhibits hemoglobin catabolism.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Plasmodium falciparum/drug effects , Atovaquone/pharmacology , Chloroquine/pharmacology , Fosfomycin/analogs & derivatives , Fosfomycin/pharmacology , Gas Chromatography-Mass Spectrometry , Hemoglobins/drug effects , Hemoglobins/metabolism , Inhibitory Concentration 50 , Methylene Blue/pharmacology , Naphthyridines/pharmacology , Plasmodium falciparum/metabolism , Proguanil/pharmacology , Triazines/pharmacology
13.
Antimicrob Agents Chemother ; 60(11): 6650-6663, 2016 11.
Article in English | MEDLINE | ID: mdl-27572396

ABSTRACT

High-throughput phenotypic screening of chemical libraries has resulted in the identification of thousands of compounds with potent antimalarial activity, although in most cases, the mechanism(s) of action of these compounds remains unknown. Here we have investigated the mode of action of 90 antimalarial compounds derived from the Malaria Box collection using high-coverage, untargeted metabolomics analysis. Approximately half of the tested compounds induced significant metabolic perturbations in in vitro cultures of Plasmodium falciparum In most cases, the metabolic profiles were highly correlated with known antimalarials, in particular artemisinin, the 4-aminoquinolines, or atovaquone. Select Malaria Box compounds also induced changes in intermediates in essential metabolic pathways, such as isoprenoid biosynthesis (i.e., 2-C-methyl-d-erythritol 2,4-cyclodiphosphate) and linolenic acid metabolism (i.e., traumatic acid). This study provides a comprehensive database of the metabolic perturbations induced by chemically diverse inhibitors and highlights the utility of metabolomics for triaging new lead compounds and defining specific modes of action, which will assist with the development and optimization of new antimalarial drugs.


Subject(s)
Antimalarials/pharmacology , Metabolic Networks and Pathways/drug effects , Molecular Targeted Therapy/methods , Plasmodium falciparum/drug effects , Small Molecule Libraries/pharmacology , Aminoquinolines/pharmacology , Antimalarials/chemistry , Artemisinins/pharmacology , Atovaquone/pharmacology , Cells, Cultured , Chromatography, Liquid/methods , Cluster Analysis , Databases, Chemical , Dicarboxylic Acids/antagonists & inhibitors , Dicarboxylic Acids/metabolism , Drug Resistance/drug effects , Erythrocytes/drug effects , Erythrocytes/parasitology , Humans , Metabolomics/methods , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Small Molecule Libraries/chemistry , Tandem Mass Spectrometry , Terpenes/antagonists & inhibitors , Terpenes/metabolism
14.
Proc Natl Acad Sci U S A ; 109(47): E3278-87, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23112171

ABSTRACT

The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the parasite slows its metabolism and progresses through its developmental cycle at a reduced rate. Isoleucine-starved parasites remain viable for 72 h and resume rapid growth upon resupplementation. Protein degradation during starvation is important for maintenance of this hibernatory state. Microarray analysis of starved parasites revealed a 60% decrease in the rate of progression through the normal transcriptional program but no other apparent stress response. Plasmodium parasites do not possess a TOR nutrient-sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic initiation factor 2α (eIF2α) stress response. Isoleucine deprivation results in GCN2-mediated phosphorylation of eIF2α, but kinase-knockout clones still are able to hibernate and recover, indicating that this pathway does not directly promote survival during isoleucine starvation. We conclude that P. falciparum, in the absence of canonical eukaryotic nutrient stress-response pathways, can cope with an inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient to be provided.


Subject(s)
Hibernation , Isoleucine/deficiency , Plasmodium falciparum/metabolism , Animals , Artemisinins/pharmacology , Carbon/metabolism , Eukaryotic Initiation Factor-2B/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Genes, Protozoan/genetics , Hibernation/drug effects , Humans , Metabolome/drug effects , Parasites/drug effects , Parasites/genetics , Parasites/growth & development , Peptide Hydrolases/metabolism , Phenotype , Phosphorylation/drug effects , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Proteolysis/drug effects , Protozoan Proteins/metabolism , Starvation
15.
J Biol Chem ; 288(51): 36338-50, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24163372

ABSTRACT

The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a "PDH-like" enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage.


Subject(s)
Acetyl Coenzyme A/biosynthesis , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Acetate-CoA Ligase/metabolism , Animals , Anopheles/parasitology , Citric Acid Cycle , Fatty Acids/metabolism , Kinetics , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Pyruvate Dehydrogenase Complex/metabolism
16.
PNAS Nexus ; 3(1): pgad438, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38156288

ABSTRACT

Skin inflammation is a complex process implicated in various dermatological disorders. The chronic proliferative dermatitis (cpd) phenotype driven by the cpd mutation (cpdm) in the Sharpin gene is characterized by dermal inflammation and epidermal abnormalities. Tumour necrosis factor (TNF) and caspase-8-driven cell death causes the pathogenesis of Sharpincpdm mice; however, the role of mind bomb 2 (MIB2), a pro-survival E3 ubiquitin ligase involved in TNF signaling, in skin inflammation remains unknown. Here, we demonstrate that MIB2 antagonizes inflammatory dermatitis in the context of the cpd mutation. Surprisingly, the role of MIB2 in limiting skin inflammation is independent of its known pro-survival function and E3 ligase activity. Instead, MIB2 enhances the production of wound-healing molecules, granulocyte colony-stimulating factor, and Eotaxin, within the skin. This discovery advances our comprehension of inflammatory cytokines and chemokines associated with cpdm pathogenesis and highlights the significance of MIB2 in inflammatory skin disease that is independent of its ability to regulate TNF-induced cell death.

17.
Redox Biol ; 59: 102552, 2023 02.
Article in English | MEDLINE | ID: mdl-36473314

ABSTRACT

The Kelch-like ECH-associated protein 1 (KEAP1) - nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway senses reactive oxygen species and regulates cellular oxidative stress. Inhibiting KEAP1 to activate the NRF2 antioxidant response has been proposed as a promising strategy to treat chronic diseases caused by oxidative stress. Here, we developed a proteolysis targeting chimera (PROTAC) that depletes KEAP1 from cells through the ubiquitin-proteasome pathway. A previously developed KEAP1 inhibitor and thalidomide were incorporated in the heterobifunctional design of the PROTAC as ligands for KEAP1 and CRBN recruitment, respectively. Optimization of the chemical composition and linker length resulted in PROTAC 14 which exhibited potent KEAP1 degradation with low nanomolar DC50 in HEK293T (11 nM) and BEAS-2B (<1 nM) cell lines. Furthermore, PROTAC 14 increased the expression of NRF2 regulated antioxidant proteins and prevented cell death induced by reactive oxygen species. Together, these results established a blueprint for further development of KEAP1-targeted heterobifunctional degraders and will facilitate the study of the biological consequences of KEAP1 removal from cells. This approach represents an alternative therapeutic strategy to existing treatments for diseases caused by oxidative stress.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Humans , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , HEK293 Cells , Oxidative Stress
18.
iScience ; 25(7): 104632, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35800780

ABSTRACT

Pathogen recognition and TNF receptors signal via receptor interacting serine/threonine kinase-3 (RIPK3) to cause cell death, including MLKL-mediated necroptosis and caspase-8-dependent apoptosis. However, the post-translational control of RIPK3 is not fully understood. Using mass-spectrometry, we identified that RIPK3 is ubiquitylated on K469. The expression of mutant RIPK3 K469R demonstrated that RIPK3 ubiquitylation can limit both RIPK3-mediated apoptosis and necroptosis. The enhanced cell death of overexpressed RIPK3 K469R and activated endogenous RIPK3 correlated with an overall increase in RIPK3 ubiquitylation. Ripk3 K469R/K469R mice challenged with Salmonella displayed enhanced bacterial loads and reduced serum IFNγ. However, Ripk3 K469R/K469R macrophages and dermal fibroblasts were not sensitized to RIPK3-mediated apoptotic or necroptotic signaling suggesting that, in these cells, there is functional redundancy with alternate RIPK3 ubiquitin-modified sites. Consistent with this idea, the mutation of other ubiquitylated RIPK3 residues also increased RIPK3 hyper-ubiquitylation and cell death. Therefore, the targeted ubiquitylation of RIPK3 may act as either a brake or accelerator of RIPK3-dependent killing.

19.
Nat Commun ; 13(1): 2073, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440107

ABSTRACT

Modulation of protein abundance using tag-Targeted Protein Degrader (tTPD) systems targeting FKBP12F36V (dTAGs) or HaloTag7 (HaloPROTACs) are powerful approaches for preclinical target validation. Interchanging tags and tag-targeting degraders is important to achieve efficient substrate degradation, yet limited degrader/tag pairs are available and side-by-side comparisons have not been performed. To expand the tTPD repertoire we developed catalytic NanoLuc-targeting PROTACs (NanoTACs) to hijack the CRL4CRBN complex and degrade NanoLuc tagged substrates, enabling rapid luminescence-based degradation screening. To benchmark NanoTACs against existing tTPD systems we use an interchangeable reporter system to comparatively test optimal degrader/tag pairs. Overall, we find the dTAG system exhibits superior degradation. To align tag-induced degradation with physiology we demonstrate that NanoTACs limit MLKL-driven necroptosis. In this work we extend the tTPD platform to include NanoTACs adding flexibility to tTPD studies, and benchmark each tTPD system to highlight the importance of comparing each system against each substrate.


Subject(s)
Benchmarking , Tacrolimus Binding Protein 1A , Luciferases , Proteolysis , Tacrolimus Binding Protein 1A/genetics
20.
J Biol Chem ; 285(24): 18615-26, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20332090

ABSTRACT

The intraerythrocytic malaria parasite exerts tight control over its ionic composition. In this study, a combination of fluorescent ion indicators and (36)Cl(-) flux measurements was used to investigate the transport of Cl(-) and the Cl(-)-dependent transport of "H(+)-equivalents" in mature (trophozoite stage) parasites, isolated from their host erythrocytes. Removal of extracellular Cl(-), resulting in an outward [Cl(-)] gradient, gave rise to a cytosolic alkalinization (i.e. a net efflux of H(+)-equivalents). This was reversed on restoration of extracellular Cl(-). The flux of H(+)-equivalents was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and, when measured in ATP-depleted parasites, showed a pronounced dependence on the pH of the parasite cytosol; the flux was low at cytosolic pH values < 7.2 but increased steeply with cytosolic pH at values > 7.2. (36)Cl(-) influx measurements revealed the presence of a Cl(-) uptake mechanism with characteristics similar to those of the Cl(-)-dependent H(+)-equivalent flux. The intracellular concentration of Cl(-) in the parasite was estimated to be approximately 48 mm in situ. The data are consistent with the intraerythrocytic parasite having in its plasma membrane a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive transporter that, under physiological conditions, imports Cl(-) together with H(+)-equivalents, resulting in an intracellular Cl(-) concentration well above that which would occur if Cl(-) ions were distributed passively in accordance with the parasite's large, inwardly negative membrane potential.


Subject(s)
Chlorides/chemistry , Erythrocytes/parasitology , Plasmodium falciparum/metabolism , Adenosine Triphosphate/metabolism , Animals , Biological Transport , Cytosol/metabolism , Erythrocyte Membrane/parasitology , Hydrogen-Ion Concentration , Ion Transport , Kinetics , Malaria/metabolism , Malaria/parasitology , Microscopy, Confocal/methods , Protons , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL