Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Arch Insect Biochem Physiol ; 116(3): e22125, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973236

ABSTRACT

Insect pest control can be achieved by the application of RNA interference (RNAi), a key molecular tool in functional genomics. Whereas most RNAi research has focused on insect pests, few studies have been performed on natural enemies. Validating the efficacy of RNAi in natural enemies is crucial for assessing its safety and enabling molecular research on these organisms. Here, we assessed the efficacy of RNAi in the ladybird beetle Eriopis connexa Germar (Coleoptera: Coccinellidae), focusing on genes related to reproduction, such as vitellogenin (Vg) and its receptor (VgR). In the transcriptome of E. connexa, we found one VgR (EcVgR) and two Vg genes (EcVg1 and EcVg2). These genes have been validated by in silico analyses of functional domains and evolutionary relationships. Five-day-old females were injected with 500 ng/µL of a specific double-stranded RNA (dsRNA) (dsEcVg1, dsEcVg2, or dsEcVgR) for RNAi tests, while nonspecific dsRNA (dsGFP or dsAgCE8.1) was used as a control. Interestingly, dsEcVg2 was able to knockdown both Vg genes, while dsEcVg1 could silence only EcVg1. Additionally, the viability of the eggs was significantly reduced when both Vg genes were knocked down at the same time (after treatment with dsEcVg2 or "dsEcVg1+dsEcVg2"). Ultimately, malformed, nonviable eggs were produced when EcVgR was silenced. Interestingly, no dsRNA treatment had an impact on the quantity of eggs laid. Therefore, the feasibility of RNAi in E. connexa has been confirmed, suggesting that this coccinellid is an excellent Neotropical model for molecular research on natural enemies and for studying RNAi nontarget effects.


Subject(s)
Coleoptera , Gene Knockdown Techniques , RNA Interference , Animals , Coleoptera/genetics , Female , Vitellogenins/genetics , Vitellogenins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Reproduction/genetics , RNA, Double-Stranded/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Egg Proteins/genetics , Egg Proteins/metabolism , Pest Control, Biological
2.
Planta Med ; 87(1-02): 6-23, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33348409

ABSTRACT

Natural products are a valuable source of biologically active compounds and continue to play an important role in modern drug discovery due to their great structural diversity and unique biological properties. Brazilian biodiversity is one of the most extensive in the world and could be an effective source of new chemical entities for drug discovery. Mosquitoes are vectors for the transmission of dengue, Zika, chikungunya, yellow fever, and many other diseases of public health importance. These diseases have a major impact on tropical and subtropical countries, and their incidence has increased dramatically in recent decades, reaching billions of people at risk worldwide. The prevention of these diseases is mainly through vector control, which is becoming more difficult because of the emergence of resistant mosquito populations to the chemical insecticides. Strategies to provide efficient and safe vector control are needed, and secondary metabolites from plant species from the Brazilian biodiversity, especially Cerrado, that are biologically active for mosquito control are herein highlighted. Also, this is a literature revision of targets as insights to promote advances in the task of developing active compounds for vector control. In view of the expansion and occurrence of arboviruses diseases worldwide, scientific reviews on bioactive natural products are important to provide molecular models for vector control and contribute with effective measures to reduce their incidence.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Brazil , Models, Molecular , Mosquito Control , Mosquito Vectors
3.
Plant Cell Environ ; 40(7): 1174-1188, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28103637

ABSTRACT

Cell cycle control in galls provoked by root-knot nematodes involves the activity of inhibitor genes like the Arabidopsis ICK/KRP members. Ectopic KRP1, KRP2 and KRP4 expression resulted in decreased gall size by inhibiting mitotic activity, whereas KRP6 induces mitosis in galls. Herein, we investigate the role of KRP3, KRP5 and KRP7 during gall development and compared their role with previously studied members of this class of cell cycle inhibitors. Overexpression of KRP3 and KRP7 culminated in undersized giant cells, with KRP3OE galls presenting peculiar elongated giant cells. Nuclei in KRP3OE and KRP5OE lines presented a convoluted and apparently connected phenotype. This appearance may be associated with the punctuated protein nuclear localization driven by specific common motifs. As well, ectopic expression of KRP3OE and KRP5OE affected nematode development and offspring. Decreased mitotic activity in galls of KRP3OE and KRP7OE lines led to a reduced gall size which presented distinct shapes - from more elongated like in the KRP3OE line to small rounded like in the KRP7OE line. Results presented strongly support the idea that induced expression of cell cycle inhibitors such as KRP3 and KRP7 in galls can be envisaged as a conceivable strategy for nematode feeding site control in crop species attacked by phytopathogenic nematodes.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/cytology , Carrier Proteins/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Tylenchoidea/pathogenicity , Animals , Arabidopsis/genetics , Arabidopsis/parasitology , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Cell Cycle/genetics , Cell Cycle Proteins , Cell Nucleus/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Gene Expression Regulation, Plant , Host-Parasite Interactions/genetics , Leupeptins/pharmacology , Plant Roots/metabolism , Plant Roots/parasitology , Plant Tumors/genetics , Plants, Genetically Modified , Ploidies , Promoter Regions, Genetic , Tylenchoidea/physiology
4.
Front Physiol ; 11: 591569, 2020.
Article in English | MEDLINE | ID: mdl-33329040

ABSTRACT

The cotton boll weevil, Anthonomus grandis, is the most economically important pest of cotton in Brazil. Pest management programs focused on A. grandis are based mostly on the use of chemical insecticides, which may cause serious ecological impacts. Furthermore, A. grandis has developed resistance to some insecticides after their long-term use. Therefore, alternative control approaches that are more sustainable and have reduced environmental impacts are highly desirable to protect cotton crops from this destructive pest. RNA interference (RNAi) is a valuable reverse genetics tool for the investigation of gene function and has been explored for the development of strategies to control agricultural insect pests. This study aimed to evaluate the biological role of the Laccase2 (AgraLac2) gene in A. grandis and its potential as an RNAi target for the control of this insect pest. We found that AgraLac2 is expressed throughout the development of A. grandis with significantly higher expression in pupal and adult developmental stages. In addition, the immunolocalization of the AgraLac2 protein in third-instar larvae using specific antibodies revealed that AgraLac2 is distributed throughout the epithelial tissue, the cuticle and the tracheal system. We also verified that the knockdown of AgraLac2 in A. grandis resulted in an altered cuticle tanning process, molting defects and arrested development. Remarkably, insects injected with dsAgraLac2 exhibited defects in cuticle hardening and pigmentation. As a consequence, the development of dsAgraLac2-treated insects was compromised, and in cases of severe phenotypic defects, the insects subsequently died. On the contrary, insects subjected to control treatments did not show any visible phenotypic defects in cuticle formation and successfully molted to the pupal and adult stages. Taken together, our data indicate that AgraLac2 is involved in the cuticle tanning process in A. grandis and may be a promising target for the development of RNAi-based technologies.

5.
3 Biotech ; 6(1): 59, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28330129

ABSTRACT

Plant defensins are antifungal peptides produced by the innate immune system plants developed to circumvent fungal infection. The defensin Drr230a, originally isolated from pea, has been previously shown to be active against various entomopathogenic and phytopathogenic fungi. In the present study, the activity of a yeast-expressed recombinant Drr230a protein (rDrr230a) was tested against impacting soybean and cotton fungi. First, the gene was subcloned into the yeast expression vector pPICZαA and expressed in Pichia pastoris. Resulting rDrr230a exhibited in vitro activity against fungal growth and spore germination of Fusarium tucumaniae, which causes soybean sudden death syndrome, and against Colletotrichum gossypii var. cephalosporioides, which causes cotton ramulosis. The rDrr230a IC50 corresponding to inhibition of fungal growth of F. tucumaniae and C. gossypii var. cephalosporioides was 7.67 and 0.84 µM, respectively, demonstrating moderate activity against F. tucumaniae and high potency against C. gossypii var. cephalosporioides. Additionally, rDrr230a at 25 ng/µl (3.83 µM) resulted in 100 % inhibition of spore germination of both fungi, demonstrating that rDrr230a affects fungal development since spore germination. Moreover, rDrr230a at 3 µg/µl (460.12 µM) inhibited 100 % of in vitro spore germination of the obligatory biotrophic fungus Phakopsora pachyrhizi, which causes Asian soybean rust. Interestingly, rDrr230a substantially decreased the severity of Asian rust, as demonstrated by in planta assay. To our knowledge, this is the first report of a plant defensin active against an obligatory biotrophic phytopathogenic fungus. Results revealed the potential of rDrr230a as a candidate to be used in plant genetic engineering to control relevant cotton and soybean fungal diseases.

6.
PLoS One ; 10(2): e0118231, 2015.
Article in English | MEDLINE | ID: mdl-25706301

ABSTRACT

Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.


Subject(s)
Digestion/genetics , Gene Expression Profiling/methods , Insect Proteins/genetics , Lepidoptera/genetics , Saccharum/parasitology , Amino Acid Sequence , Animals , CD13 Antigens/genetics , Expressed Sequence Tags/chemistry , Gene Library , Gene Ontology , Lepidoptera/growth & development , Lepidoptera/physiology , Life Cycle Stages/genetics , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid
7.
BMC Res Notes ; 6: 196, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23668315

ABSTRACT

BACKGROUND: Soybean pathogens and pests reduce grain production worldwide. Biotic interaction cause extensive changes in plant gene expression profile and the data produced by functional genomics studies need validation, usually done by quantitative PCR. Nevertheless, this technique relies on accurate normalization which, in turn, depends upon the proper selection of stable reference genes for each experimental condition. To date, only a few studies were performed to validate reference genes in soybean subjected to biotic stress. Here, we report reference genes validation in soybean during root-knot nematode (Meloidogyne incognita) parasitism and velvetbean caterpillar (Anticarsia gemmatalis) attack. FINDINGS: The expression stability of nine classical reference genes (GmCYP2, GmELF1A, GmELF1B, GmACT11, GmTUB, GmTUA5, GmG6PD, GmUBC2 and GmUBC4) was evaluated using twenty-four experimental samples including different organs, developmental stages, roots infected with M. incognita and leaves attacked by A. gemmatalis. Two different algorithms (geNorm and NormFinder) were used to determine expression stability. GmCYP2 and GmUBC4 are the most stable in different organs. Considering the developmental stages, GmELF1A and GmELF1B genes are the most stable. For spatial and temporal gene expression studies, normalization may be performed using GmUBC4, GmUBC2, GmCYP2 and GmACT11 as reference genes. Our data indicate that both GmELF1A and GmTUA5 are the most stable reference genes for data normalization obtained from soybean roots infected with M. incognita, and GmCYP2 and GmELF1A are the most stable in soybean leaves infested with A. gemmatalis. CONCLUSIONS: Future expression studies using nematode infection and caterpilar infestation in soybean plant may utilize the reference gene sets reported here.


Subject(s)
Genes, Plant , Glycine max/genetics , Insecta/physiology , Nematoda/physiology , Polymerase Chain Reaction/methods , Animals , Base Sequence , DNA Primers , Glycine max/parasitology
8.
PLoS One ; 8(12): e85079, 2013.
Article in English | MEDLINE | ID: mdl-24386449

ABSTRACT

Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.


Subject(s)
Insect Proteins/biosynthesis , RNA Interference/physiology , Transcriptome/physiology , Weevils/metabolism , Animals , Gossypium/parasitology , Insect Proteins/genetics , Species Specificity , Weevils/genetics
SELECTION OF CITATIONS
SEARCH DETAIL