Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
PLoS Biol ; 22(3): e3002006, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452102

ABSTRACT

Proteome analyses of the postsynaptic density (PSD), a proteinaceous specialization beneath the postsynaptic membrane of excitatory synapses, have identified several thousands of proteins. While proteins with predictable functions have been well studied, functionally uncharacterized proteins are mostly overlooked. In this study, we conducted a comprehensive meta-analysis of 35 PSD proteome datasets, encompassing a total of 5,869 proteins. Employing a ranking methodology, we identified 97 proteins that remain inadequately characterized. From this selection, we focused our detailed analysis on the highest-ranked protein, FAM81A. FAM81A interacts with PSD proteins, including PSD-95, SynGAP, and NMDA receptors, and promotes liquid-liquid phase separation of those proteins in cultured cells or in vitro. Down-regulation of FAM81A in cultured neurons causes a decrease in the size of PSD-95 puncta and the frequency of neuronal firing. Our findings suggest that FAM81A plays a crucial role in facilitating the interaction and assembly of proteins within the PSD, and its presence is important for maintaining normal synaptic function. Additionally, our methodology underscores the necessity for further characterization of numerous synaptic proteins that still lack comprehensive understanding.


Subject(s)
Phase Separation , Proteome , Proteome/metabolism , Disks Large Homolog 4 Protein/metabolism , Synapses/metabolism , Synaptic Membranes
2.
PLoS Biol ; 22(1): e3002406, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227562

ABSTRACT

Breast tumours are embedded in a collagen I-rich extracellular matrix (ECM) network, where nutrients are scarce due to limited blood flow and elevated tumour growth. Metabolic adaptation is required for cancer cells to endure these conditions. Here, we demonstrated that the presence of ECM supported the growth of invasive breast cancer cells, but not non-transformed mammary epithelial cells, under amino acid starvation, through a mechanism that required macropinocytosis-dependent ECM uptake. Importantly, we showed that this behaviour was acquired during carcinoma progression. ECM internalisation, followed by lysosomal degradation, contributed to the up-regulation of the intracellular levels of several amino acids, most notably tyrosine and phenylalanine. This resulted in elevated tyrosine catabolism on ECM under starvation, leading to increased fumarate levels, potentially feeding into the tricarboxylic acid (TCA) cycle. Interestingly, this pathway was required for ECM-dependent cell growth and invasive cell migration under amino acid starvation, as the knockdown of p-hydroxyphenylpyruvate hydroxylase-like protein (HPDL), the third enzyme of the pathway, opposed cell growth and motility on ECM in both 2D and 3D systems, without affecting cell proliferation on plastic. Finally, high HPDL expression correlated with poor prognosis in breast cancer patients. Collectively, our results highlight that the ECM in the tumour microenvironment (TME) represents an alternative source of nutrients to support cancer cell growth by regulating phenylalanine and tyrosine metabolism.


Subject(s)
Amino Acids , Breast Neoplasms , Humans , Female , Amino Acids/metabolism , Breast Neoplasms/metabolism , Extracellular Matrix/metabolism , Tyrosine/metabolism , Phenylalanine , Tumor Microenvironment
3.
Proc Natl Acad Sci U S A ; 120(2): e2213056120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595686

ABSTRACT

Despite the essential role of plasma cells in health and disease, the cellular mechanisms controlling their survival and secretory capacity are still poorly understood. Here, we identified the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Sec22b as a unique and critical regulator of plasma cell maintenance and function. In the absence of Sec22b, plasma cells were hardly detectable and serum antibody titers were dramatically reduced. Accordingly, Sec22b-deficient mice fail to mount a protective immune response. At the mechanistic level, we demonstrated that Sec22b contributes to efficient antibody secretion and is a central regulator of plasma cell maintenance through the regulation of their transcriptional identity and of the morphology of the endoplasmic reticulum and mitochondria. Altogether, our results unveil an essential and nonredundant role for Sec22b as a regulator of plasma cell fitness and of the humoral immune response.


Subject(s)
Plasma Cells , SNARE Proteins , Mice , Animals , Plasma Cells/metabolism , R-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Endoplasmic Reticulum/metabolism , Biological Transport
4.
Nucleic Acids Res ; 51(12): 6006-6019, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37099381

ABSTRACT

Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.


Subject(s)
Histone Deacetylases , Nucleosomes , Chromatin/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Multiprotein Complexes/metabolism , Nucleosomes/genetics , Transcription Factors/metabolism , Humans
5.
Hum Mol Genet ; 31(18): 3095-3106, 2022 09 10.
Article in English | MEDLINE | ID: mdl-35531971

ABSTRACT

Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Animals , Epigenesis, Genetic , Histone Methyltransferases/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Mice , Synaptosomes/metabolism , Transcriptome/genetics
6.
EMBO Rep ; 20(10): e47472, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31402609

ABSTRACT

S-acylation (palmitoylation) is the only fully reversible lipid modification of proteins; however, little is known about how protein S-acyltransferases (PATs) that mediate it are regulated. DHHC5 is a PAT that is mainly localised at the plasma membrane with roles in synaptic plasticity, massive endocytosis and cancer cell growth/invasion. Here, we demonstrate that DHHC5 binds to and palmitoylates a novel accessory protein Golga7b. Palmitoylation of Golga7b prevents clathrin-mediated endocytosis of DHHC5 and stabilises it at the plasma membrane. Proteomic analysis of the composition of DHHC5/Golga7b-associated protein complexes reveals a striking enrichment in adhesion proteins, particularly components of desmosomes. We show that desmoglein-2 and plakophilin-3 are substrates of DHHC5 and that DHHC5 and Golga7b are required for localisation of desmoglein-2 to the plasma membrane and for desmosomal patterning. Loss of DHHC5/Golga7b causes functional impairments in cell adhesion, suggesting these proteins have a wider role in cell adhesion beyond desmosome assembly. This work uncovers a novel mechanism of DHHC5 regulation by Golga7b and demonstrates a role for the DHHC5/Golga7b complex in the regulation of cell adhesion.


Subject(s)
Acyltransferases/metabolism , Cell Membrane/metabolism , Golgi Matrix Proteins/metabolism , Acylation , Acyltransferases/chemistry , Calcium/metabolism , Cell Adhesion , Desmoglein 2/metabolism , Desmosomes/metabolism , Endocytosis , HeLa Cells , Humans , Lipoylation , Models, Biological , Mutant Proteins/metabolism , Protein Binding , Protein Interaction Mapping , Protein Stability , Protein Transport , RNA, Small Interfering/metabolism
7.
Eur J Neurosci ; 51(3): 793-805, 2020 02.
Article in English | MEDLINE | ID: mdl-31621109

ABSTRACT

In recent years, the remarkable molecular complexity of synapses has been revealed, with over 1,000 proteins identified in the synapse proteome. Although it is known that different receptors and other synaptic proteins are present in different types of neurons, the extent of synapse diversity across the brain is largely unknown. This is mainly due to the limitations of current techniques. Here, we report an efficient method for the purification of synaptic protein complexes, fusing a high-affinity tag to endogenous PSD95 in specific cell types. We also developed a strategy, which enables the visualisation of endogenous PSD95 with fluorescent-protein tag in Cre-recombinase-expressing cells. We demonstrate the feasibility of proteomic analysis of synaptic protein complexes and visualisation of these in specific cell types. We find that the composition of PSD95 complexes purified from specific cell types differs from those extracted from tissues with diverse cellular composition. The results suggest that there might be differential interactions in the PSD95 complexes in different brain regions. We have detected differentially interacting proteins by comparing data sets from the whole hippocampus and the CA3 subfield of the hippocampus. Therefore, these novel conditional PSD95 tagging lines will not only serve as powerful tools for precisely dissecting synapse diversity in specific brain regions and subsets of neuronal cells, but also provide an opportunity to better understand brain region- and cell-type-specific alterations associated with various psychiatric/neurological diseases. These newly developed conditional gene tagging methods can be applied to many different synaptic proteins and will facilitate research on the molecular complexity of synapses.


Subject(s)
Proteomics , Synapses , Animals , Disks Large Homolog 4 Protein/metabolism , Hippocampus/metabolism , Mice , Neurons/metabolism , Proteome/metabolism , Synapses/metabolism
8.
J Cell Sci ; 131(20)2018 10 22.
Article in English | MEDLINE | ID: mdl-30254024

ABSTRACT

STX19 is an unusual Qa-SNARE as it lacks a C-terminal transmembrane domain. However, it is efficiently targeted to post-Golgi membranes. Here, we set out to determine the intracellular localisation of endogenous STX19 and elucidate the mechanism by which it is targeted to membranes. We have found that a pool of STX19 is localised to tubular recycling endosomes where it colocalises with MICAL-L1 and Rab8 (which has Rab8a and Rab8b forms). Using a combination of genetic, biochemical and cell-based approaches, we have identified that STX19 is S-acylated at its C-terminus and is a substrate for several Golgi-localised S-acyltransferases, suggesting that STX19 is initially S-acylated at the Golgi before trafficking to the plasma membrane and endosomes. Surprisingly, we have found that S-acylation is a key determinant in targeting STX19 to tubular recycling endosomes, suggesting that S-acylation may play a general role in directing proteins to this compartment. In addition, S-acylation also protects STX19 from proteosomal degradation, indicating that S-acylation regulates the function of STX19 at multiple levels.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Acylation/genetics , Protein Transport/genetics , Q-SNARE Proteins/metabolism , Humans
9.
Nature ; 506(7487): 185-90, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24463508

ABSTRACT

Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.


Subject(s)
Multifactorial Inheritance/genetics , Mutation/genetics , Schizophrenia/genetics , Autistic Disorder/genetics , Calcium Channels/genetics , Cytoskeletal Proteins/genetics , DNA Copy Number Variations/genetics , Disks Large Homolog 4 Protein , Female , Fragile X Mental Retardation Protein/metabolism , Genome-Wide Association Study , Humans , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Receptors, N-Methyl-D-Aspartate/genetics
10.
Mol Cell ; 43(3): 406-17, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21816347

ABSTRACT

Cyclin-dependent kinases comprise the conserved machinery that drives progress through the cell cycle, but how they do this in mammalian cells is still unclear. To identify the mechanisms by which cyclin-cdks control the cell cycle, we performed a time-resolved analysis of the in vivo interactors of cyclins E1, A2, and B1 by quantitative mass spectrometry. This global analysis of context-dependent protein interactions reveals the temporal dynamics of cyclin function in which networks of cyclin-cdk interactions vary according to the type of cyclin and cell-cycle stage. Our results explain the temporal specificity of the cell-cycle machinery, thereby providing a biochemical mechanism for the genetic requirement for multiple cyclins in vivo and reveal how the actions of specific cyclins are coordinated to control the cell cycle. Furthermore, we identify key substrates (Wee1 and c15orf42/Sld3) that reveal how cyclin A is able to promote both DNA replication and mitosis.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle , Cyclin A2/metabolism , Cyclin B1/metabolism , Cyclin-Dependent Kinases/physiology , Nuclear Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Amino Acid Sequence , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/physiology , Cell Line , Cyclin A2/chemistry , Cyclin A2/physiology , Cyclin B1/chemistry , Cyclin B1/physiology , Cyclin E/chemistry , Cyclin E/metabolism , Cyclin E/physiology , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/metabolism , DNA Replication , HeLa Cells , Humans , Immunoprecipitation , Mass Spectrometry , Molecular Sequence Data , Oncogene Proteins/chemistry , Oncogene Proteins/metabolism , Oncogene Proteins/physiology , Phosphorylation , Proteomics/methods , Sequence Alignment , Substrate Specificity
11.
PLoS Biol ; 12(3): e1001806, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24594931

ABSTRACT

Many critical events in the Plasmodium life cycle rely on the controlled release of Ca²âº from intracellular stores to activate stage-specific Ca²âº-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP)-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca²âº required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca²âº signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5)-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca²âº effectors, PKG emerges as a unifying factor to control multiple cellular Ca²âº signals essential for malaria parasite development and transmission.


Subject(s)
Calcium Signaling , Cyclic GMP-Dependent Protein Kinases/physiology , Phosphatidylinositols/metabolism , Plasmodium falciparum/physiology , Animals , Culicidae/parasitology , Cyclic GMP-Dependent Protein Kinases/metabolism , Host-Parasite Interactions , Humans , Life Cycle Stages , Malaria/parasitology , Models, Biological , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism
12.
Genome Res ; 21(5): 756-67, 2011 May.
Article in English | MEDLINE | ID: mdl-21460061

ABSTRACT

Recent advances in proteomic mass spectrometry (MS) offer the chance to marry high-throughput peptide sequencing to transcript models, allowing the validation, refinement, and identification of new protein-coding loci. We present a novel pipeline that integrates highly sensitive and statistically robust peptide spectrum matching with genome-wide protein-coding predictions to perform large-scale gene validation and discovery in the mouse genome for the first time. In searching an excess of 10 million spectra, we have been able to validate 32%, 17%, and 7% of all protein-coding genes, exons, and splice boundaries, respectively. Moreover, we present strong evidence for the identification of multiple alternatively spliced translations from 53 genes and have uncovered 10 entirely novel protein-coding genes, which are not covered in any mouse annotation data sources. One such novel protein-coding gene is a fusion protein that spans the Ins2 and Igf2 loci to produce a transcript encoding the insulin II and the insulin-like growth factor 2-derived peptides. We also report nine processed pseudogenes that have unique peptide hits, demonstrating, for the first time, that they are not just transcribed but are translated and are therefore resurrected into new coding loci. This work not only highlights an important utility for MS data in genome annotation but also provides unique insights into the gene structure and propagation in the mouse genome. All these data have been subsequently used to improve the publicly available mouse annotation available in both the Vega and Ensembl genome browsers (http://vega.sanger.ac.uk).


Subject(s)
Alternative Splicing , Genes , Peptides/genetics , Proteomics/methods , Pseudogenes/genetics , Tandem Mass Spectrometry/methods , Animals , Genome , Genomics/methods , Mice , Peptides/chemistry
13.
Mol Cell Proteomics ; 11(8): 478-91, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22493177

ABSTRACT

Peptide identification using tandem mass spectrometry is a core technology in proteomics. Latest generations of mass spectrometry instruments enable the use of electron transfer dissociation (ETD) to complement collision induced dissociation (CID) for peptide fragmentation. However, a critical limitation to the use of ETD has been optimal database search software. Percolator is a post-search algorithm, which uses semi-supervised machine learning to improve the rate of peptide spectrum identifications (PSMs) together with providing reliable significance measures. We have previously interfaced the Mascot search engine with Percolator and demonstrated sensitivity and specificity benefits with CID data. Here, we report recent developments in the Mascot Percolator V2.0 software including an improved feature calculator and support for a wider range of ion series. The updated software is applied to the analysis of several CID and ETD fragmented peptide data sets. This version of Mascot Percolator increases the number of CID PSMs by up to 80% and ETD PSMs by up to 60% at a 0.01 q-value (1% false discovery rate) threshold over a standard Mascot search, notably recovering PSMs from high charge state precursor ions. The greatly increased number of PSMs and peptide coverage afforded by Mascot Percolator has enabled a fuller assessment of CID/ETD complementarity to be performed. Using a data set of CID and ETcaD spectral pairs, we find that at a 1% false discovery rate, the overlap in peptide identifications by CID and ETD is 83%, which is significantly higher than that obtained using either stand-alone Mascot (69%) or OMSSA (39%). We conclude that Mascot Percolator is a highly sensitive and accurate post-search algorithm for peptide identification and allows direct comparison of peptide identifications using multiple alternative fragmentation techniques.


Subject(s)
Algorithms , Peptides/analysis , Proteomics/methods , Software , Tandem Mass Spectrometry/methods , Artificial Intelligence , Chromatography, Liquid , Databases, Protein , Escherichia coli/metabolism , Escherichia coli Proteins/analysis , Fungal Proteins/analysis , Humans , Reproducibility of Results , Yeasts/metabolism
14.
Cell Rep ; 42(10): 113181, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37792529

ABSTRACT

Damage to our genome causes acute senescence in mammalian cells, which undergo growth arrest and release a senescence-associated secretory phenotype (SASP) that propagates the stress response to bystander cells. Thus, acute senescence is a powerful tumor suppressor. Salmonella enterica hijacks senescence through its typhoid toxin, which usurps unidentified factors in the stress secretome of senescent cells to mediate intracellular infections. Here, transcriptomics of toxin-induced senescent cells (TxSCs) and proteomics of their secretome identify the factors as Wnt5a, INHBA, and GDF15. Wnt5a establishes a positive feedback loop, driving INHBA and GDF15 expression. In fibroblasts, Wnt5a and INHBA mediate autocrine senescence in TxSCs and paracrine senescence in naive cells. Wnt5a synergizes with GDF15 to increase Salmonella invasion. Intestinal TxSCs undergo apoptosis without Wnt5a, which is required for establishing intestinal TxSCs. The study reveals how an innate defense against cancer is co-opted by a bacterial pathogen to cause widespread damage and mediate infections.


Subject(s)
Neoplasms , Salmonella Infections , Toxins, Biological , Typhoid Fever , Animals , Humans , Cellular Senescence/genetics , Neoplasms/metabolism , Cells, Cultured , Mammals
15.
Life Sci Alliance ; 6(1)2023 01.
Article in English | MEDLINE | ID: mdl-36241425

ABSTRACT

New therapeutic targets are a valuable resource for treatment of SARS-CoV-2 viral infection. Genome-wide association studies have identified risk loci associated with COVID-19, but many loci are associated with comorbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of the 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins. Aggregating COVID-19 genome-wide association studies statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19. EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. EXOSC2 is a component of the RNA exosome, and here, LC-MS/MS analysis of protein pulldowns demonstrated interaction between the SARS-CoV-2 RNA polymerase and most of the human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression and impeded SARS-CoV-2 replication without impacting cellular viability. Targeted depletion of EXOSC2 may be a safe and effective strategy to protect against clinical COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Chromatography, Liquid , Codon, Nonsense , DNA-Directed RNA Polymerases/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Genome-Wide Association Study , Humans , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Tandem Mass Spectrometry , Viral Replicase Complex Proteins , Virus Replication/genetics
16.
Nat Neurosci ; 11(7): 799-806, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18536710

ABSTRACT

Understanding the origins and evolution of synapses may provide insight into species diversity and the organization of the brain. Using comparative proteomics and genomics, we examined the evolution of the postsynaptic density (PSD) and membrane-associated guanylate kinase (MAGUK)-associated signaling complexes (MASCs) that underlie learning and memory. PSD and MASC orthologs found in yeast carry out basic cellular functions to regulate protein synthesis and structural plasticity. We observed marked changes in signaling complexity at the yeast-metazoan and invertebrate-vertebrate boundaries, with an expansion of key synaptic components, notably receptors, adhesion/cytoskeletal proteins and scaffold proteins. A proteomic comparison of Drosophila and mouse MASCs revealed species-specific adaptation with greater signaling complexity in mouse. Although synaptic components were conserved amongst diverse vertebrate species, mapping mRNA and protein expression in the mouse brain showed that vertebrate-specific components preferentially contributed to differences between brain regions. We propose that the evolution of synapse complexity around a core proto-synapse has contributed to invertebrate-vertebrate differences and to brain specialization.


Subject(s)
Cytoskeletal Proteins/metabolism , Evaluation Studies as Topic , Nerve Tissue Proteins/metabolism , Proteome , Synapses/metabolism , Animals , Apoptosis Regulatory Proteins , Behavior, Animal , Brain/cytology , Brain/metabolism , Brain Mapping , CARD Signaling Adaptor Proteins , Cytoskeletal Proteins/genetics , Drosophila , Gene Expression , Mice , Nerve Tissue Proteins/genetics , Neurons/metabolism , Proteomics/methods , Signal Transduction/physiology
17.
Mol Omics ; 18(1): 31-44, 2022 01 17.
Article in English | MEDLINE | ID: mdl-34709266

ABSTRACT

Lysine specific demethylase 1 (LSD1) regulates gene expression as part of the CoREST complex, along with co-repressor of REST (CoREST) and histone deacetylase 1 (HDAC1). CoREST is recruited to specific genomic loci by core components and numerous transient interactions with chromatin-associated factors and transcription factors. We hypothesise that many of these weaker and transient associations may be difficult to identify using traditional co-immunoprecipitation methods. We have therefore employed proximity-dependent biotin-identification (BioID) with four different members of the CoREST complex, in three different cell types, to identify a comprehensive network of LSD1/CoREST associated proteins. In HEK293T cells, we identified 302 CoREST-associated proteins. Among this group were 16 of 18 known CoREST components and numerous novel associations, including readers (CHD3, 4, 6, 7 and 8), writers (KMT2B and KMT2D) and erasers (KDM2B) of histone methylation. However, components of other HDAC1 containing complexes (e.g. Sin3) were largely absent. To examine the dynamic nature of the CoREST interactome in a primary cell type, we replaced endogenous LSD1 with BirA*-LSD1 in embryonic stem (ES) cells and performed BioID in pluripotent, early- and late-differentiating environments. We identified 156 LSD1-associated proteins of which 67 were constitutively associated across all three time-points (43%), including novel associations with the MMB and ChAHP complexes, implying that the majority of interactors are both dynamic and cell type dependent. In total, we have performed 16 independent BioID experiments for LSD1 in three different cell types, producing a definitive network of LSD1-assoicated proteins that should provide a major resource for the field.


Subject(s)
Biotin , Histone Demethylases , Cell Differentiation , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , HEK293 Cells , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Nerve Tissue Proteins/genetics
18.
Front Immunol ; 13: 956991, 2022.
Article in English | MEDLINE | ID: mdl-35967296

ABSTRACT

Dysregulated neutrophilic inflammation can be highly destructive in chronic inflammatory diseases due to prolonged neutrophil lifespan and continual release of histotoxic mediators in inflamed tissues. Therapeutic induction of neutrophil apoptosis, an immunologically silent form of cell death, may be beneficial in these diseases, provided that the apoptotic neutrophils are efficiently cleared from the tissue. Previous research in our group identified ErbB inhibitors as able to induce neutrophil apoptosis and reduce neutrophilic inflammation both in vitro and in vivo. Here, we extend that work using a clinical ErbB inhibitor, neratinib, which has the potential to be repurposed in inflammatory diseases. We show that neratinib reduces neutrophilic migration o an inflammatory site in zebrafish larvae. Neratinib upregulates efferocytosis and reduces the number of persisting neutrophil corpses in mouse models of acute, but not chronic, lung injury, suggesting that the drug may have therapeutic benefits in acute inflammatory settings. Phosphoproteomic analysis of human neutrophils shows that neratinib modifies the phosphorylation of proteins regulating apoptosis, migration, and efferocytosis. This work identifies a potential mechanism for neratinib in treating acute lung inflammation by upregulating the clearance of dead neutrophils and, through examination of the neutrophil phosphoproteome, provides important insights into the mechanisms by which this may be occurring.


Subject(s)
Neutrophils , Zebrafish , Animals , Apoptosis/physiology , ErbB Receptors/metabolism , Humans , Inflammation , Macrophages/metabolism , Mice , Protein Kinase Inhibitors , Proteome/metabolism , Quinolines
19.
bioRxiv ; 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35291294

ABSTRACT

New therapeutic targets are a valuable resource in the struggle to reduce the morbidity and mortality associated with the COVID-19 pandemic, caused by the SARS-CoV-2 virus. Genome-wide association studies (GWAS) have identified risk loci, but some loci are associated with co-morbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins; EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. Lung-specific eQTLs were identified from GTEx (v7) for each of the 332 host proteins. Aggregating COVID-19 GWAS statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19 which survived stringent multiple testing correction. EXOSC2 is a component of the RNA exosome and indeed, LC-MS/MS analysis of protein pulldowns demonstrated an interaction between the SARS-CoV-2 RNA polymerase and the majority of human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression, impeded SARS-CoV-2 replication and upregulated oligoadenylate synthase ( OAS) genes, which have been linked to a successful immune response against SARS-CoV-2. Reduced EXOSC2 expression did not reduce cellular viability. OAS gene expression changes occurred independent of infection and in the absence of significant upregulation of other interferon-stimulated genes (ISGs). Targeted depletion or functional inhibition of EXOSC2 may be a safe and effective strategy to protect at-risk individuals against clinical COVID-19.

20.
Nat Commun ; 13(1): 27, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031607

ABSTRACT

Coordinated programs of gene expression drive brain development. It is unclear which transcriptional programs, in which cell-types, are affected in neuropsychiatric disorders such as schizophrenia. Here we integrate human genetics with transcriptomic data from differentiation of human embryonic stem cells into cortical excitatory neurons. We identify transcriptional programs expressed during early neurogenesis in vitro and in human foetal cortex that are down-regulated in DLG2-/- lines. Down-regulation impacted neuronal differentiation and maturation, impairing migration, morphology and action potential generation. Genetic variation in these programs is associated with neuropsychiatric disorders and cognitive function, with associated variants predominantly concentrated in loss-of-function intolerant genes. Neurogenic programs also overlap schizophrenia GWAS enrichment previously identified in mature excitatory neurons, suggesting that pathways active during prenatal cortical development may also be associated with mature neuronal dysfunction. Our data from human embryonic stem cells, when combined with analysis of available foetal cortical gene expression data, de novo rare variants and GWAS statistics for neuropsychiatric disorders and cognition, reveal a convergence on transcriptional programs regulating excitatory cortical neurogenesis.


Subject(s)
Cerebral Cortex/embryology , Gene Expression Regulation, Developmental , Guanylate Kinases/genetics , Neurogenesis , Tumor Suppressor Proteins/genetics , Animals , Cell Differentiation , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Female , Gene Knockdown Techniques , Genetic Predisposition to Disease , Guanylate Kinases/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Mental Disorders/genetics , Neurogenesis/genetics , Neurogenesis/physiology , Neurons , Pregnancy , Schizophrenia/genetics , Transcriptome , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL