Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Sensors (Basel) ; 20(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455611

ABSTRACT

Deep-sea ecological monitoring is increasingly recognized as indispensable for the comprehension of the largest biome on Earth, but at the same time it is subjected to growing human impacts for the exploitation of biotic and abiotic resources. Here, we present the Naples Ecological REsearch (NEREA) stand-alone observatory concept (NEREA-fix), an integrated observatory with a modular, adaptive structure, characterized by a multiparametric video-platform to be deployed in the Dohrn canyon (Gulf of Naples, Tyrrhenian Sea) at ca. 650 m depth. The observatory integrates a seabed platform with optoacoustic and oceanographic/geochemical sensors connected to a surface transmission buoy, plus a mooring line (also equipped with depth-staged environmental sensors). This reinforced high-frequency and long-lasting ecological monitoring will integrate the historical data conducted over 40 years for the Long-Term Ecological Research (LTER) at the station "Mare Chiara", and ongoing vessel-assisted plankton (and future environmental DNA-eDNA) sampling. NEREA aims at expanding the observational capacity in a key area of the Mediterranean Sea, representing a first step towards the establishment of a bentho-pelagic network to enforce an end-to-end transdisciplinary approach for the monitoring of marine ecosystems across a wide range of animal sizes (from bacteria to megafauna).


Subject(s)
Ecosystem , Oceanography , Animals , Environmental Monitoring , Female , Horses , Humans , Mediterranean Sea
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1908): 20230178, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39005032

ABSTRACT

Environmental DNA metabarcoding (eDNA metaB) is fundamental for monitoring marine biodiversity and its spread in coastal ecosystems. We applied eDNA metaB to seawater samples to investigate the spatiotemporal variability of plankton and small pelagic fish, comparing sites with different environmental conditions across a coast-to-offshore gradient at river mouths along the Campania coast (Italy) over 2 years (2020-2021). We found a marked seasonality in the planktonic community at the regional scale, likely owing to the hydrodynamic connection among sampling sites, which was derived from numerical simulations. Nonetheless, spatial variability among plankton communities was detected during summer. Overall, slight changes in plankton and fish composition resulted in the potential reorganization of the pelagic food web at the local scale. This work supports the utility of eDNA metaB in combination with hydrodynamic modelling to study marine biodiversity in the water column of coastal systems. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , DNA, Environmental , Fishes , Food Chain , Plankton , Animals , Fishes/genetics , Fishes/physiology , Italy , DNA, Environmental/analysis , Plankton/genetics , Plankton/physiology , Seawater , Spatio-Temporal Analysis , Seasons
3.
Sci Data ; 11(1): 989, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256479

ABSTRACT

The NEREA (Naples Ecological REsearch for Augmented observatories) initiative aims to establish an augmented observatory in the Gulf of Naples (GoN), designed to advance the understanding of marine ecosystems through a holistic approach. Inspired by the Tara Oceans expedition and building on the scientific legacy of the MareChiara Long-Term Ecological Research (LTER-MC) site, NEREA integrates traditional physical, chemical, and biological measurements with state-of-the-art methodologies such as metabarcoding and metagenomics. Here we present the first 10 months of NEREA data, collected from April 2019 to January 2020, encompassing physico-chemical parameters, plankton biodiversity (e.g., microscopy and flow cytometry), prokaryotic and eukaryotic metabarcoding, a prokaryotic gene catalogue, and a collection of 3818 prokaryotic Metagenome-Assembled Genomes (MAGs). NEREA's efforts produce a significant volume of multifaceted data, which enhances our understanding of marine ecosystems and promotes the development of scientific hypotheses and ideas.


Subject(s)
Ecosystem , Plankton , Metagenome , Biodiversity , Metagenomics
4.
PLoS One ; 10(1): e0115468, 2015.
Article in English | MEDLINE | ID: mdl-25629963

ABSTRACT

During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time-dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environmental variables, such as light intensity, thickness of upper mixed layer and profiles of vertical turbulent diffusivity, obtained starting from experimental findings. Theoretical distributions of phytoplankton cell concentration was converted in chlorophyll concentration, and compared with the experimental profiles measured in a site of the Tyrrhenian Sea at four different times (seasons) of the year, during four different oceanographic cruises. As a result we find a good agreement between theoretical and experimental distributions of chlorophyll concentration. In particular, theoretical results reveal that the seasonal changes of environmental variables play a key role in the phytoplankton distribution and determine the properties of the deep chlorophyll maximum. This study could be extended to other marine ecosystems to predict future changes in the phytoplankton biomass due to global warming, in view of devising strategies to prevent the decline of the primary production and the consequent decrease of fish species.


Subject(s)
Chlorophyll/chemistry , Light , Phytoplankton/physiology , Seawater/chemistry , Algorithms , Mediterranean Sea , Models, Theoretical , Oceanography , Seawater/analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL