Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cell ; 184(24): 5886-5901.e22, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34822784

ABSTRACT

Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.


Subject(s)
Alzheimer Disease/drug therapy , Drug Design , Receptor, Muscarinic M1/agonists , Aged , Aged, 80 and over , Aging/pathology , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amino Acid Sequence , Animals , Blood Pressure/drug effects , CHO Cells , Cholinesterase Inhibitors/pharmacology , Cricetulus , Crystallization , Disease Models, Animal , Dogs , Donepezil/pharmacology , Electroencephalography , Female , HEK293 Cells , Heart Rate/drug effects , Humans , Male , Mice, Inbred C57BL , Models, Molecular , Molecular Dynamics Simulation , Nerve Degeneration/complications , Nerve Degeneration/pathology , Primates , Rats , Receptor, Muscarinic M1/chemistry , Signal Transduction , Structural Homology, Protein
2.
Nature ; 553(7686): 111-114, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29300009

ABSTRACT

The complement system is a crucial component of the host response to infection and tissue damage. Activation of the complement cascade generates anaphylatoxins including C5a and C3a. C5a exerts a pro-inflammatory effect via the G-protein-coupled receptor C5a anaphylatoxin chemotactic receptor 1 (C5aR1, also known as CD88) that is expressed on cells of myeloid origin. Inhibitors of the complement system have long been of interest as potential drugs for the treatment of diseases such as sepsis, rheumatoid arthritis, Crohn's disease and ischaemia-reperfusion injuries. More recently, a role of C5a in neurodegenerative conditions such as Alzheimer's disease has been identified. Peptide antagonists based on the C5a ligand have progressed to phase 2 trials in psoriasis and rheumatoid arthritis; however, these compounds exhibited problems with off-target activity, production costs, potential immunogenicity and poor oral bioavailability. Several small-molecule competitive antagonists for C5aR1, such as W-54011 and NDT9513727, have been identified by C5a radioligand-binding assays. NDT9513727 is a non-peptide inverse agonist of C5aR1, and is highly selective for the primate and gerbil receptors over those of other species. Here, to study the mechanism of action of C5a antagonists, we determine the structure of a thermostabilized C5aR1 (known as C5aR1 StaR) in complex with NDT9513727. We found that the small molecule bound between transmembrane helices 3, 4 and 5, outside the helical bundle. One key interaction between the small molecule and residue Trp2135.49 seems to determine the species selectivity of the compound. The structure demonstrates that NDT9513727 exerts its inverse-agonist activity through an extra-helical mode of action.


Subject(s)
Benzodioxoles/chemistry , Benzodioxoles/metabolism , Imidazoles/chemistry , Imidazoles/metabolism , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/chemistry , Animals , Benzodioxoles/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Inverse Agonism , HEK293 Cells , Humans , Imidazoles/pharmacology , Models, Molecular , Mutation , Protein Stability , Protein Structure, Secondary , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
4.
Nature ; 546(7657): 254-258, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28562585

ABSTRACT

Glucagon-like peptide 1 (GLP-1) regulates glucose homeostasis through the control of insulin release from the pancreas. GLP-1 peptide agonists are efficacious drugs for the treatment of diabetes. To gain insight into the molecular mechanism of action of GLP-1 peptides, here we report the crystal structure of the full-length GLP-1 receptor bound to a truncated peptide agonist. The peptide agonist retains an α-helical conformation as it sits deep within the receptor-binding pocket. The arrangement of the transmembrane helices reveals hallmarks of an active conformation similar to that observed in class A receptors. Guided by this structural information, we design peptide agonists with potent in vivo activity in a mouse model of diabetes.


Subject(s)
Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/chemistry , Peptides/chemistry , Peptides/pharmacology , Animals , Binding Sites , Crystallography, X-Ray , Dose-Response Relationship, Drug , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Male , Mice , Models, Molecular , Peptides/metabolism , Protein Conformation , Rats , Receptors, Corticotropin-Releasing Hormone/chemistry , Receptors, Glucagon/chemistry
5.
Nature ; 545(7652): 112-115, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28445455

ABSTRACT

Protease-activated receptors (PARs) are a family of G-protein-coupled receptors (GPCRs) that are irreversibly activated by proteolytic cleavage of the N terminus, which unmasks a tethered peptide ligand that binds and activates the transmembrane receptor domain, eliciting a cellular cascade in response to inflammatory signals and other stimuli. PARs are implicated in a wide range of diseases, such as cancer and inflammation. PARs have been the subject of major pharmaceutical research efforts but the discovery of small-molecule antagonists that effectively bind them has proved challenging. The only marketed drug targeting a PAR is vorapaxar, a selective antagonist of PAR1 used to prevent thrombosis. The structure of PAR1 in complex with vorapaxar has been reported previously. Despite sequence homology across the PAR isoforms, discovery of PAR2 antagonists has been less successful, although GB88 has been described as a weak antagonist. Here we report crystal structures of PAR2 in complex with two distinct antagonists and a blocking antibody. The antagonist AZ8838 binds in a fully occluded pocket near the extracellular surface. Functional and binding studies reveal that AZ8838 exhibits slow binding kinetics, which is an attractive feature for a PAR2 antagonist competing against a tethered ligand. Antagonist AZ3451 binds to a remote allosteric site outside the helical bundle. We propose that antagonist binding prevents structural rearrangements required for receptor activation and signalling. We also show that a blocking antibody antigen-binding fragment binds to the extracellular surface of PAR2, preventing access of the tethered ligand to the peptide-binding site. These structures provide a basis for the development of selective PAR2 antagonists for a range of therapeutic uses.


Subject(s)
Receptor, PAR-2/chemistry , Receptor, PAR-2/metabolism , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Antibodies, Blocking/chemistry , Antibodies, Blocking/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzodioxoles/chemistry , Benzodioxoles/pharmacology , Benzyl Alcohols/chemistry , Benzyl Alcohols/pharmacology , Crystallography, X-Ray , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/pharmacology , Kinetics , Ligands , Models, Molecular , Receptor, PAR-2/antagonists & inhibitors , Signal Transduction/drug effects
6.
Nature ; 540(7633): 462-465, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27926729

ABSTRACT

Chemokines and their G-protein-coupled receptors play a diverse role in immune defence by controlling the migration, activation and survival of immune cells. They are also involved in viral entry, tumour growth and metastasis and hence are important drug targets in a wide range of diseases. Despite very significant efforts by the pharmaceutical industry to develop drugs, with over 50 small-molecule drugs directed at the family entering clinical development, only two compounds have reached the market: maraviroc (CCR5) for HIV infection and plerixafor (CXCR4) for stem-cell mobilization. The high failure rate may in part be due to limited understanding of the mechanism of action of chemokine antagonists and an inability to optimize compounds in the absence of structural information. CC chemokine receptor type 9 (CCR9) activation by CCL25 plays a key role in leukocyte recruitment to the gut and represents a therapeutic target in inflammatory bowel disease. The selective CCR9 antagonist vercirnon progressed to phase 3 clinical trials in Crohn's disease but efficacy was limited, with the need for very high doses to block receptor activation. Here we report the crystal structure of the CCR9 receptor in complex with vercirnon at 2.8 Å resolution. Remarkably, vercirnon binds to the intracellular side of the receptor, exerting allosteric antagonism and preventing G-protein coupling. This binding site explains the need for relatively lipophilic ligands and describes another example of an allosteric site on G-protein-coupled receptors that can be targeted for drug design, not only at CCR9, but potentially extending to other chemokine receptors.


Subject(s)
Receptors, CCR/antagonists & inhibitors , Receptors, CCR/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Allosteric Site/genetics , Conserved Sequence , Crystallography, X-Ray , Cytoplasm/metabolism , Drug Design , Heterotrimeric GTP-Binding Proteins/antagonists & inhibitors , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Ligands , Models, Molecular , Mutagenesis , Receptors, CCR/genetics , Receptors, CCR5/chemistry , Receptors, CXCR4/chemistry
7.
Nature ; 533(7602): 274-7, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27111510

ABSTRACT

Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors.


Subject(s)
Pyrazoles/metabolism , Receptors, Glucagon/antagonists & inhibitors , Receptors, Glucagon/chemistry , beta-Alanine/analogs & derivatives , Allosteric Site/drug effects , Crystallography, X-Ray , Glucagon/metabolism , Glucagon/pharmacology , Humans , Ligands , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Protein Conformation/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Receptors, Corticotropin-Releasing Hormone/chemistry , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Glucagon/classification , Receptors, Glucagon/metabolism , beta-Alanine/chemistry , beta-Alanine/metabolism , beta-Alanine/pharmacology
8.
Nature ; 511(7511): 557-62, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25042998

ABSTRACT

Metabotropic glutamate receptors are class C G-protein-coupled receptors which respond to the neurotransmitter glutamate. Structural studies have been restricted to the amino-terminal extracellular domain, providing little understanding of the membrane-spanning signal transduction domain. Metabotropic glutamate receptor 5 is of considerable interest as a drug target in the treatment of fragile X syndrome, autism, depression, anxiety, addiction and movement disorders. Here we report the crystal structure of the transmembrane domain of the human receptor in complex with the negative allosteric modulator, mavoglurant. The structure provides detailed insight into the architecture of the transmembrane domain of class C receptors including the precise location of the allosteric binding site within the transmembrane domain and key micro-switches which regulate receptor signalling. This structure also provides a model for all class C G-protein-coupled receptors and may aid in the design of new small-molecule drugs for the treatment of brain disorders.


Subject(s)
Models, Molecular , Receptor, Metabotropic Glutamate 5/chemistry , Amino Acid Motifs , Binding Sites , Crystallography, X-Ray , HEK293 Cells , Humans , Protein Structure, Tertiary , Rhodopsin/chemistry
9.
Angew Chem Int Ed Engl ; 59(38): 16536-16543, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32542862

ABSTRACT

We present a robust protocol based on iterations of free energy perturbation (FEP) calculations, chemical synthesis, biophysical mapping and X-ray crystallography to reveal the binding mode of an antagonist series to the A2A adenosine receptor (AR). Eight A2A AR binding site mutations from biophysical mapping experiments were initially analyzed with sidechain FEP simulations, performed on alternate binding modes. The results distinctively supported one binding mode, which was subsequently used to design new chromone derivatives. Their affinities for the A2A AR were experimentally determined and investigated through a cycle of ligand-FEP calculations, validating the binding orientation of the different chemical substituents proposed. Subsequent X-ray crystallography of the A2A AR with a low and a high affinity chromone derivative confirmed the predicted binding orientation. The new molecules and structures here reported were driven by free energy calculations, and provide new insights on antagonist binding to the A2A AR, an emerging target in immuno-oncology.


Subject(s)
Purinergic P1 Receptor Antagonists/chemistry , Receptor, Adenosine A2A/chemistry , Thermodynamics , Binding Sites/drug effects , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Structure , Purinergic P1 Receptor Antagonists/pharmacology , Receptor, Adenosine A2A/metabolism
10.
Bioorg Med Chem Lett ; 29(20): 126611, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31447084

ABSTRACT

A series of novel allosteric antagonists of the GLP-1 receptor (GLP-1R), exemplified by HTL26119, are described. SBDD approaches were employed to identify HTL26119, exploiting structural understanding of the allosteric binding site of the closely related Glucagon receptor (GCGR) (Jazayeri et al., 2016) and the homology relationships between GCGR and GLP-1R. The region around residue C3476.36b of the GLP-1R receptor represents a key difference from GCGR and was targeted for selectivity for GLP-1R.


Subject(s)
Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Heterocyclic Compounds/chemistry , Allosteric Regulation/drug effects , Allosteric Site , Amino Acid Sequence , Drug Design , Molecular Docking Simulation , Molecular Structure , Protein Binding , Receptors, Glucagon/antagonists & inhibitors , Signal Transduction , Structure-Activity Relationship
11.
Nature ; 499(7459): 438-43, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23863939

ABSTRACT

Structural analysis of class B G-protein-coupled receptors (GPCRs), cell-surface proteins that respond to peptide hormones, has been restricted to the amino-terminal extracellular domain, thus providing little understanding of the membrane-spanning signal transduction domain. The corticotropin-releasing factor receptor type 1 is a class B receptor which mediates the response to stress and has been considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of the human corticotropin-releasing factor receptor type 1 in complex with the small-molecule antagonist CP-376395. The structure provides detailed insight into the architecture of class B receptors. Atomic details of the interactions of the receptor with the non-peptide ligand that binds deep within the receptor are described. This structure provides a model for all class B GPCRs and may aid in the design of new small-molecule drugs for diseases of brain and metabolism.


Subject(s)
Receptors, Corticotropin-Releasing Hormone/chemistry , Receptors, Corticotropin-Releasing Hormone/classification , Amino Acid Motifs , Amino Acid Sequence , Aminopyridines/chemistry , Aminopyridines/metabolism , Aminopyridines/pharmacology , Binding Sites , Conserved Sequence , Crystallography, X-Ray , HEK293 Cells , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Dopamine D3/antagonists & inhibitors , Receptors, Dopamine D3/chemistry , Receptors, Dopamine D3/classification
13.
Biochem Soc Trans ; 41(1): 185-90, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23356281

ABSTRACT

Since the publication of the first X-ray structure of a GPCR (G-protein couple receptor) in 2000, the rate at which subsequent ones have appeared has steadily increased. This has required the development of new methodology to overcome the challenges presented by instability of isolated GPCRs, combined with a systematic optimization of existing approaches for protein expression, purification and crystallization. In addition, quality control measures that are predictive of successful outcomes have been identified. Repeated attempts at solving the structures of GPCRs have highlighted experimental approaches that are most likely to lead to success, and have allowed definition of a first-pass protocol for new receptors.


Subject(s)
Receptors, G-Protein-Coupled/isolation & purification , Crystallography, X-Ray , Drug Discovery , Electrophoresis, Polyacrylamide Gel , Protein Conformation , Receptors, G-Protein-Coupled/chemistry
14.
J Med Chem ; 64(7): 3827-3842, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33764785

ABSTRACT

In this study, we determined the crystal structure of an engineered human adenosine A2A receptor bound to a partial agonist and compared it to structures cocrystallized with either a full agonist or an antagonist/inverse agonist. The interaction between the partial agonist, belonging to a class of dicyanopyridines, and amino acids in the ligand binding pocket inspired us to develop a small library of derivatives and assess their affinity in radioligand binding studies and potency and intrinsic activity in a functional, label-free, intact cell assay. It appeared that some of the derivatives retained the partial agonist profile, whereas other ligands turned into inverse agonists. We rationalized this remarkable behavior with additional computational docking studies.


Subject(s)
Adenosine A2 Receptor Agonists/metabolism , Aminopyridines/metabolism , Pyrimidines/metabolism , Receptor, Adenosine A2A/metabolism , Aminopyridines/chemical synthesis , Animals , Binding Sites , CHO Cells , Cricetulus , Crystallography, X-Ray , Drug Inverse Agonism , Drug Partial Agonism , HEK293 Cells , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Pyrimidines/chemical synthesis , Small Molecule Libraries/metabolism
15.
J Med Chem ; 63(4): 1528-1543, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31860301

ABSTRACT

The orexin system, which consists of the two G protein-coupled receptors OX1 and OX2, activated by the neuropeptides OX-A and OX-B, is firmly established as a key regulator of behavioral arousal, sleep, and wakefulness and has been an area of intense research effort over the past two decades. X-ray structures of the receptors in complex with 10 new antagonist ligands from diverse chemotypes are presented, which complement the existing structural information for the system and highlight the critical importance of lipophilic hotspots and water molecules for these peptidergic GPCR targets. Learnings from the structural information regarding the utility of pharmacophore models and how selectivity between OX1 and OX2 can be achieved are discussed.


Subject(s)
Orexin Receptor Antagonists/metabolism , Orexin Receptors/metabolism , Binding Sites , Computer Simulation , Crystallography, X-Ray , HEK293 Cells , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Orexin Receptor Antagonists/chemistry , Orexin Receptors/chemistry
16.
Sci Rep ; 8(1): 41, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311713

ABSTRACT

Here we report an efficient method to generate multiple co-structures of the A2A G protein-coupled receptor (GPCR) with small-molecules from a single preparation of a thermostabilised receptor crystallised in Lipidic Cubic Phase (LCP). Receptor crystallisation is achieved following purification using a low affinity "carrier" ligand (theophylline) and crystals are then soaked in solutions containing the desired (higher affinity) compounds. Complete datasets to high resolution can then be collected from single crystals and seven structures are reported here of which three are novel. The method significantly improves structural throughput for ligand screening using stabilised GPCRs, thereby actively driving Structure-Based Drug Discovery (SBDD).


Subject(s)
Receptor, Adenosine A2A/chemistry , Receptors, G-Protein-Coupled/chemistry , Crystallography, X-Ray , Humans , Ligands , Models, Molecular , Molecular Conformation , Protein Unfolding , Receptor, Adenosine A2A/metabolism , Receptors, G-Protein-Coupled/metabolism
17.
Trends Pharmacol Sci ; 39(1): 75-89, 2018 01.
Article in English | MEDLINE | ID: mdl-29203139

ABSTRACT

The four adenosine receptors (ARs), A1, A2A, A2B, and A3, constitute a subfamily of G protein-coupled receptors (GPCRs) with exceptional foundations for structure-based ligand design. The vast amount of mutagenesis data, accumulated in the literature since the 1990s, has been recently supplemented with structural information, currently consisting of several inactive and active structures of the A2A and inactive conformations of the A1 ARs. We provide the first integrated view of the pharmacological, biochemical, and structural data available for this receptor family, by mapping onto the relevant crystal structures all site-directed mutagenesis data, curated and deposited at the GPCR database (available through http://www.gpcrdb.org). This analysis provides novel insights into ligand binding, allosteric modulation, and signaling of the AR family.


Subject(s)
Mutation , Purinergic P1 Receptor Agonists/pharmacology , Purinergic P1 Receptor Antagonists/pharmacology , Receptors, Purinergic P1/chemistry , Signal Transduction , Allosteric Site , Animals , Humans , Protein Binding , Purinergic P1 Receptor Agonists/chemistry , Purinergic P1 Receptor Antagonists/chemistry , Receptors, Purinergic P1/genetics , Receptors, Purinergic P1/metabolism
18.
SLAS Discov ; 23(5): 429-436, 2018 06.
Article in English | MEDLINE | ID: mdl-29316408

ABSTRACT

The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.


Subject(s)
DNA/genetics , Mutation/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Allosteric Site/drug effects , Cell Line , HEK293 Cells , Humans , Ligands , Proteins/genetics , Receptor, PAR-2 , Receptors, G-Protein-Coupled/genetics
19.
In Silico Pharmacol ; 5(1): 16, 2017.
Article in English | MEDLINE | ID: mdl-29308352

ABSTRACT

Ligand-protein binding kinetic rates are growing in importance as parameters to consider in drug discovery and lead optimization. In this study we analysed using surface plasmon resonance (SPR) the transition state (TS) properties of a set of six adenosine A2A receptor inhibitors, belonging to both the xanthine and the triazolo-triazine scaffolds. SPR highlighted interesting differences among the ligands in the enthalpic and entropic components of the TS energy barriers for the binding and unbinding events. To better understand at a molecular level these differences, we developed suMetaD, a novel molecular dynamics (MD)-based approach combining supervised MD and metadynamics. This method allows simulation of the ligand unbinding and binding events. It also provides the system conformation corresponding to the highest energy barrier the ligand is required to overcome to reach the final state. For the six ligands evaluated in this study their TS thermodynamic properties were linked in particular to the role of water molecules in solvating/desolvating the pocket and the small molecules. suMetaD identified kinetic bottleneck conformations near the bound state position or in the vestibule area. In the first case the barrier is mainly enthalpic, requiring the breaking of strong interactions with the protein. In the vestibule TS location the kinetic bottleneck is instead mainly of entropic nature, linked to the solvent behaviour.

20.
Structure ; 25(8): 1275-1285.e4, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28712806

ABSTRACT

The adenosine A1 and A2A receptors belong to the purinergic family of G protein-coupled receptors, and regulate diverse functions of the cardiovascular, respiratory, renal, inflammation, and CNS. Xanthines such as caffeine and theophylline are weak, non-selective antagonists of adenosine receptors. Here we report the structure of a thermostabilized human A1 receptor at 3.3 Å resolution with PSB36, an A1-selective xanthine-based antagonist. This is compared with structures of the A2A receptor with PSB36 (2.8 Å resolution), caffeine (2.1 Å), and theophylline (2.0 Å) to highlight features of ligand recognition which are common across xanthines. The structures of A1R and A2AR were analyzed to identify the differences that are important selectivity determinants for xanthine ligands, and the role of T2707.35 in A1R (M2707.35 in A2AR) in conferring selectivity was confirmed by mutagenesis. The structural differences confirmed to lead to selectivity can be utilized in the design of new subtype-selective A1R or A2AR antagonists.


Subject(s)
Caffeine/pharmacology , Receptor, Adenosine A1/chemistry , Receptor, Adenosine A2A/chemistry , Theophylline/pharmacology , Binding Sites , Caffeine/chemistry , HEK293 Cells , Humans , Molecular Docking Simulation , Protein Binding , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism , Substrate Specificity , Theophylline/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL