Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Biol Chem ; 291(24): 12747-12760, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27068743

ABSTRACT

Most colon cancer cases are initiated by truncating mutations in the tumor suppressor, adenomatous polyposis coli (APC). APC is a critical negative regulator of the Wnt signaling pathway that participates in a multi-protein "destruction complex" to target the key effector protein ß-catenin for ubiquitin-mediated proteolysis. Prior work has established that the poly(ADP-ribose) polymerase (PARP) enzyme Tankyrase (TNKS) antagonizes destruction complex activity by promoting degradation of the scaffold protein Axin, and recent work suggests that TNKS inhibition is a promising cancer therapy. We performed a yeast two-hybrid (Y2H) screen and uncovered TNKS as a putative binding partner of Drosophila APC2, suggesting that TNKS may play multiple roles in destruction complex regulation. We find that TNKS binds a C-terminal RPQPSG motif in Drosophila APC2, and that this motif is conserved in human APC2, but not human APC1. In addition, we find that APC2 can recruit TNKS into the ß-catenin destruction complex, placing the APC2/TNKS interaction at the correct intracellular location to regulate ß-catenin proteolysis. We further show that TNKS directly PARylates both Drosophila Axin and APC2, but that PARylation does not globally regulate APC2 protein levels as it does for Axin. Moreover, TNKS inhibition in colon cancer cells decreases ß-catenin signaling, which we find cannot be explained solely through Axin stabilization. Instead, our findings suggest that TNKS regulates destruction complex activity at the level of both Axin and APC2, providing further mechanistic insight into TNKS inhibition as a potential Wnt pathway cancer therapy.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Axin Protein/metabolism , Cytoskeletal Proteins/metabolism , Tankyrases/metabolism , beta Catenin/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Axin Protein/genetics , Blotting, Western , Cell Line, Tumor , Cytoskeletal Proteins/genetics , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Fluorescent Antibody Technique , HCT116 Cells , Humans , Male , Protein Binding , Substrate Specificity , Tankyrases/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Two-Hybrid System Techniques , beta Catenin/genetics
2.
BMC Cancer ; 15: 62, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25884851

ABSTRACT

BACKGROUND: Given the paucity of information on dose intensity, the objective of this study is to describe the use of adjuvant chemotherapy for stage III colon cancer, focusing on relative dose intensity (RDI), overall survival (OS) and disease-free survival (DFS). METHODS: Retrospective cohort of 367 patients diagnosed with stage III colon cancer in 2003-2008 and treated at 19 VA medical centers. Kaplan-Meier curves summarize 5-year OS and 3-year DFS by chemotherapy regimen and RDI, and multivariable Cox proportional hazards regression was used to model these associations. RESULTS: 5-fluorouracil/leucovorin (FU/LV) was the most commonly initiated regimen in 2003 (94.4%) and 2004 (62.7%); in 2005-2008, a majority of patients (60%-74%) was started on an oxaliplatin-based regimen. Median RDI was 82.3%. Receipt of >70% RDI was associated with better 5-year OS (p < 0.001) and 3-year DFS (P = 0.009) than was receipt of ≤70% RDI, with 5-year OS rates of 66.3% and 50.5%, respectively and 3-year DFS rates of 66.1% and 52.7%, respectively. In the multivariable analysis of 5-year OS, oxaliplatin + 5-FU/LV (versus 5-FU/LV) (HR = 0.55; 95% CI = 0.34-0.91), >70% RDI at the first year (HR = 0.58; 95% CI = 0.37-0.89) and married status (HR = 0.66; 95% CI = 0.45-0.97) were associated with significantly decreased risk of death, while age ≥75 (versus 55-64) (HR = 2.06; 95% CI = 1.25-3.40), Charlson Comorbidity Index (HR = 1.17; 95% CI = 1.06-1.30), T4 tumor status (versus T1/T2) (HR = 5.88; 95% CI = 2.69-12.9), N2 node status (HR = 1.68; 95% CI = 1.12-2.50) and bowel obstruction (HR = 2.32, 95% CI = 1.36-3.95) were associated with significantly increased risk. Similar associations were observed for DFS. CONCLUSION: Patients with stage III colon cancer who received >70% RDI had improved 5-year OS. The association between RDI and survival needs to be examined in studies of adjuvant chemotherapy for colon cancer outside of the VA.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Veterans , Aged , Chemotherapy, Adjuvant/methods , Female , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Humans , Leucovorin/administration & dosage , Leucovorin/adverse effects , Male , Middle Aged , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/adverse effects , Oxaliplatin , Retrospective Studies , Risk Factors , Survival Analysis , Treatment Outcome
3.
Nat Biomed Eng ; 8(3): 310-324, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38036616

ABSTRACT

Advances in immunology, immuno-oncology, drug discovery and vaccine development demand improvements in the capabilities of flow cytometry to allow it to measure more protein markers per cell at multiple timepoints. However, the size of panels of fluorophore markers is limited by overlaps in fluorescence-emission spectra, and flow cytometers typically perform cell measurements at one timepoint. Here we describe multi-pass high-dimensional flow cytometry, a method leveraging cellular barcoding via microparticles emitting near-infrared laser light to track and repeatedly measure each cell using more markers and fewer colours. By using live human peripheral blood mononuclear cells, we show that the method enables the time-resolved characterization of the same cells before and after stimulation, their analysis via a 10-marker panel with minimal compensation for spectral spillover and their deep immunophenotyping via a 32-marker panel, where the same cells are analysed in 3 back-to-back cycles with 10-13 markers per cycle, reducing overall spillover and simplifying marker-panel design. Cellular barcoding in flow cytometry extends the utility of the technique for high-dimensional multi-pass single-cell analyses.


Subject(s)
Leukocytes, Mononuclear , Light , Humans , Flow Cytometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL