Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell Rep ; 42(3): 112199, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36870054

ABSTRACT

The DNA-alkylating metabolite tilimycin is a microbial genotoxin. Intestinal accumulation of tilimycin in individuals carrying til+ Klebsiella spp. causes apoptotic erosion of the epithelium and colitis. Renewal of the intestinal lining and response to injury requires the activities of stem cells located at the base of intestinal crypts. This study interrogates the consequences of tilimycin-induced DNA damage to cycling stem cells. We charted the spatial distribution and luminal quantities of til metabolites in Klebsiella-colonized mice in the context of a complex microbial community. Loss of marker gene G6pd function indicates genetic aberrations in colorectal stem cells that became stabilized in monoclonal mutant crypts. Mice colonized with tilimycin-producing Klebsiella displayed both higher frequencies of somatic mutation and more mutations per affected individual than animals carrying a non-producing mutant. Our findings imply that genotoxic til+ Klebsiella may drive somatic genetic change in the colon and increase disease susceptibility in human hosts.


Subject(s)
Microbiota , Mutagens , Humans , Mice , Animals , Mutagens/metabolism , Colon/metabolism , Mutation/genetics , Stem Cells , Intestinal Mucosa
3.
Clin Microbiol Infect ; 28(5): 690-694, 2022 May.
Article in English | MEDLINE | ID: mdl-34582979

ABSTRACT

OBJECTIVE: Toxin-producing Klebsiella oxytoca causes antibiotic-associated haemorrhagic colitis (AAHC). The disease-relevant cytotoxins tilivalline and tilimycine produced by certain K. oxytoca isolates are encoded by the non-ribosomal peptide synthetase genes A (npsA) and B (npsB). In this study, the new LightMix® Modular kit for the detection of relevant K. oxytoca sensu lato (s.l.) toxin genes was evaluated. METHODS: DNA was extracted on the automated EMAG® platform. Amplification was done on the Light Cycler® 480 II instrument. In total, 130 residual faecal specimens collected from patients with antibiotic-associated diarrhoea were studied to determine the clinical sensitivity and specificity. Toxigenic culture served as reference method. RESULTS: With the new kit, the limit of detection was 15 CFU/mL for all targets. For the pehX target specific to K. oxytoca s.l., 65 of 130 clinical specimens were positive, while toxin-specific targets (npsA/npsB) were positive in 47 of 130. The npsA/npsB PCR targets showed a clinical sensitivity of 100% (95%CI 80.5-100%) and a specificity of 73.5% (95%CI 64.3-81.3%) with a positive predictive value of 16.5% (95%CI 12.7-21.2%) and a negative predictive value of 100%. CONCLUSION: Compared with culture, additional clinical specimens positive for K. oxytoca s.l. were detected with real-time PCR. The specificity of the toxin targets appears moderate due to the inferior sensitivity of the culture-based reference method. Since the developed assay is highly sensitive, it may be used as first-line method to improve the diagnosis of AAHC.


Subject(s)
Colitis , Enterocolitis, Pseudomembranous , Klebsiella Infections , Anti-Bacterial Agents/therapeutic use , Colitis/complications , Colitis/diagnosis , Colitis/drug therapy , Enterocolitis, Pseudomembranous/drug therapy , Hemorrhage , Humans , Klebsiella Infections/microbiology , Klebsiella oxytoca/genetics , Real-Time Polymerase Chain Reaction
4.
Nat Microbiol ; 7(11): 1834-1848, 2022 11.
Article in English | MEDLINE | ID: mdl-36289400

ABSTRACT

Klebsiella spp. that secrete the DNA-alkylating enterotoxin tilimycin colonize the human intestinal tract. Numbers of toxigenic bacteria increase during antibiotic use, and the resulting accumulation of tilimycin in the intestinal lumen damages the epithelium via genetic instability and apoptosis. Here we examine the impact of this genotoxin on the gut ecosystem. 16S rRNA sequencing of faecal samples from mice colonized with Klebsiella oxytoca strains and mechanistic analyses show that tilimycin is a pro-mutagenic antibiotic affecting multiple phyla. Transient synthesis of tilimycin in the murine gut antagonized niche competitors, reduced microbial richness and altered taxonomic composition of the microbiota both during and following exposure. Moreover, tilimycin secretion increased rates of mutagenesis in co-resident opportunistic pathogens such as Klebsiella pneumoniae and Escherichia coli, as shown by de novo acquisition of antibiotic resistance. We conclude that tilimycin is a bacterial mutagen, and flares of genotoxic Klebsiella have the potential to drive the emergence of resistance, destabilize the gut microbiota and shape its evolutionary trajectory.


Subject(s)
Enterotoxins , Klebsiella , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Ecosystem , Escherichia coli/genetics , Klebsiella/genetics , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome
5.
mBio ; 13(1): e0375221, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35073747

ABSTRACT

Gastrointestinal microbes respond to biochemical metabolites that coordinate their behaviors. Here, we demonstrate that bacterial indole functions as a multifactorial mitigator of Klebsiella grimontii and Klebsiella oxytoca pathogenicity. These closely related microbes produce the enterotoxins tilimycin and tilivalline; cytotoxin-producing strains are the causative agent of antibiotic-associated hemorrhagic colitis and have been associated with necrotizing enterocolitis of premature infants. We demonstrate that carbohydrates induce cytotoxin synthesis while concurrently repressing indole biosynthesis. Conversely, indole represses cytotoxin production. In both cases, the alterations stemmed from differential transcription of npsA and npsB, key genes involved in tilimycin biosynthesis. Indole also enhances conversion of tilimycin to tilivalline, an indole analog with reduced cytotoxicity. In this context, we established that tilivalline, but not tilimycin, is a strong agonist of pregnane X receptor (PXR), a master regulator of xenobiotic detoxification and intestinal inflammation. Tilivalline binding upregulated PXR-responsive detoxifying genes and inhibited tubulin-directed toxicity. Bacterial indole, therefore, acts in a multifunctional manner to mitigate cytotoxicity by Klebsiella spp.: suppression of toxin production, enhanced conversion of tilimycin to tilivalline, and activation of PXR. IMPORTANCE The human gut harbors a complex community of microbes, including several species and strains that could be commensals or pathogens depending on context. The specific environmental conditions under which a resident microbe changes its relationship with a host and adopts pathogenic behaviors, in many cases, remain poorly understood. Here, we describe a novel communication network involving the regulation of K. grimontii and K. oxytoca enterotoxicity. Bacterial indole was identified as a central modulator of these colitogenic microbes by suppressing bacterial toxin (tilimycin) synthesis and converting tilimycin to tilivalline while simultaneously activating a host receptor, PXR, as a means of mitigating tissue cytotoxicity. On the other hand, fermentable carbohydrates were found to inhibit indole biosynthesis and enhance toxin production. This integrated network involving microbial, host, and metabolic factors provides a contextual framework to better understand K. oxytoca complex pathogenicity.


Subject(s)
Enterocolitis, Pseudomembranous , Klebsiella Infections , Humans , Infant, Newborn , Klebsiella oxytoca/genetics , Klebsiella oxytoca/metabolism , Enterotoxins/metabolism , Enterocolitis, Pseudomembranous/microbiology , Klebsiella Infections/microbiology , Cytotoxins/metabolism , Indoles/metabolism
6.
Front Microbiol ; 12: 692453, 2021.
Article in English | MEDLINE | ID: mdl-34276625

ABSTRACT

Members of the Klebsiella oxytoca species complex (KoSC) are emerging human pathogens causing infections of increasing significance especially in healthcare settings. KoSC strains are affiliated with distinct phylogroups based on genetic variation at the beta-lactamase gene (bla OXY) and it has been proposed that each major phylogroup represents a unique species. However, since the typing methods applied in clinical settings cannot differentiate every species within the complex, existing clinical, epidemiological and DNA sequence data is frequently misclassified. Here we systematically examined the phylogenetic relationship of KoSC strains to evaluate robustness of existing typing methods and to provide a simple typing strategy for KoSC members that cannot be differentiated biochemically. Initial analysis of a collection of K. oxytoca, K. michiganensis, K. pasteurii, and K. grimontii strains of environmental origin showed robust correlation of core phylogeny and blaOXY grouping. Moreover, we identified species-specific accessory gene loci for these strains. Extension of species correlation using database entries initially failed. However, assessment of average nucleotide identities (ANI) and phylogenetic validations showed that nearly one third of isolates in public databases have been misidentified. Reclassification resulted in a robust reference strain set for reliable species identification of new isolates or for retyping of strains previously analyzed by multi-locus sequence typing (MLST). Finally, we show convergence of ANI, core gene phylogeny, and accessory gene content for available KoSC genomes. We conclude that also the monophyletic members K. oxytoca, K. michiganensis, K. pasteurii and K. grimontii can be simply differentiated by a PCR strategy targeting bla OXY and accessory genes defined here.

SELECTION OF CITATIONS
SEARCH DETAIL