Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
J Inorg Biochem ; 239: 112064, 2023 02.
Article in English | MEDLINE | ID: mdl-36410306

ABSTRACT

We report the synthesis of a new asymmetric heptadentate ligand based on the 1,3-diaminopropan-2-ol backbone. The ligand 3-[[3-(bis-pyridin-2-ylmethyl-amino)-2-hydroxy-propyl]-(2-carbamoyl-ethyl)-amino]-propionamide (HL1) contains two amide and two pyridine groups attached to the 1,3-diaminopropan-2-ol core. Reaction between HL1 and Zn(ClO4)2.6H2O resulted in the formation of the dinuclear [Zn2(L1)(µ-OAc)](ClO4)2 complex, characterized by single crystal X-ray diffraction, 1H, 13C and 15N NMR, ESI-(+)-MS, CHN elemental analysis as well as infrared spectroscopy. The phosphatase activity of the complex was studied in the pH range 6-11 employing pyridinium bis(2,4-dinitrophenyl)phosphate (py(BDNPP)) as substrate. The complex exhibited activity dependent on the pH, presenting an asymmetric bell shape profile with the highest activity at pH 9; at high pH ligand exchange is rate-limiting. The hydrolysis of BDNPP- at pH 9 displayed behavior characteristic of Michaelis-Menten kinetics, with kcat = 5.06 × 10-3 min-1 and Km = 5.7 ± 1.0 mM. DFT calculations map out plausible reaction pathways and identify a terminal, Zn(II)-bound hydroxide as likely nucleophile.


Subject(s)
Phosphoric Monoester Hydrolases , Zinc , Zinc/chemistry , Ligands , Hydrolysis , Kinetics , Phosphoric Monoester Hydrolases/chemistry , Crystallography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL