Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Evol Biol ; 37(1): 62-75, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285658

ABSTRACT

Associating with plant hosts is thought to have elevated the diversification of insect herbivores, which comprise the majority of global species diversity. In particular, there is considerable interest in understanding the genetic changes that allow host-plant shifts to occur in pest insects and in determining what aspects of functional genomic diversity impact host-plant breadth. Insect chemoreceptors play a central role in mediating insect-plant interactions, as they directly influence plant detection and sensory stimuli during feeding. Although chemosensory genes evolve rapidly, it is unclear how they evolve in response to host shifts and host specialization. We investigate whether selection at chemosensory genes is linked to host-plant expansion from the buffalo burr, Solanum rostratum, to potato, Solanum tuberosum, in the super-pest Colorado potato beetle (CPB), Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). First, to refine our knowledge of CPB chemosensory genes, we developed novel gene expression data for the antennae and maxillary-labial palps. We then examine patterns of selection at these loci within CPB, as well as compare whether rates of selection vary with respect to 9 closely related, non-pest Leptinotarsa species that vary in diet breadth. We find that rates of positive selection on olfactory receptors are higher in host-plant generalists, and this signal is particularly strong in CPB. These results provide strong candidates for further research on the genetic basis of variation in insect chemosensory performance and novel targets for pest control of a notorious super-pest.


Subject(s)
Coleoptera , Solanum tuberosum , Animals , Coleoptera/genetics , Solanum tuberosum/genetics , Genomics , Diet , Colorado
2.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35044459

ABSTRACT

Insecticide resistance and rapid pest evolution threatens food security and the development of sustainable agricultural practices, yet the evolutionary mechanisms that allow pests to rapidly adapt to control tactics remains unclear. Here, we examine how a global super-pest, the Colorado potato beetle (CPB), Leptinotarsa decemlineata, rapidly evolves resistance to insecticides. Using whole-genome resequencing and transcriptomic data focused on its ancestral and pest range in North America, we assess evidence for three, nonmutually exclusive models of rapid evolution: pervasive selection on novel mutations, rapid regulatory evolution, and repeated selection on standing genetic variation. Population genomic analysis demonstrates that CPB is geographically structured, even among recently established pest populations. Pest populations exhibit similar levels of nucleotide diversity, relative to nonpest populations, and show evidence of recent expansion. Genome scans provide clear signatures of repeated adaptation across CPB populations, with especially strong evidence of selection on insecticide resistance genes in different populations. Analyses of gene expression show that constitutive upregulation of candidate insecticide resistance genes drives distinctive population patterns. CPB evolves insecticide resistance repeatedly across agricultural regions, leveraging similar genetic pathways but different genes, demonstrating a polygenic trait architecture for insecticide resistance that can evolve from standing genetic variation. Despite expectations, we do not find support for strong selection on novel mutations, or rapid evolution from selection on regulatory genes. These results suggest that integrated pest management practices must mitigate the evolution of polygenic resistance phenotypes among local pest populations, in order to maintain the efficacy and sustainability of novel control techniques.


Subject(s)
Coleoptera , Insecticides , Solanum tuberosum , Animals , Coleoptera/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Sequence Analysis, DNA , Solanum tuberosum/genetics
3.
Mol Ecol ; 32(13): 3356-3367, 2023 07.
Article in English | MEDLINE | ID: mdl-35771845

ABSTRACT

Recent declines in once-common species are triggering concern that an environmental crisis point has been reached. Yet, the lack of long abundance time series data for most species can make it difficult to attribute these changes to anthropogenic causes, and to separate them from normal cycles. Genetic diversity, on the other hand, is sensitive to past and recent environmental changes, and reflects a measure of a populations' potential to adapt to future stressors. Here, we consider whether patterns of genetic diversity among aquatic insects can be linked to historical and recent patterns of land use change. We collated mitochondrial cytochrome c oxidase subunit I (COI) variation for >700 aquatic insect species across the United States, where patterns of agricultural expansion and intensification have been documented since the 1800s. We found that genetic diversity was lowest in regions where cropland was historically (pre-1950) most extensive, suggesting a legacy of past environmental harm. Genetic diversity further declined where cropland has since expanded, even after accounting for climate and sampling effects. Notably though, genetic diversity also appeared to rebound where cropland has diminished. Our study suggests that genetic diversity at the community level can be a powerful tool to infer potential population declines and rebounds over longer time spans than is typically possible with ecological data. For the aquatic insects that we considered, patterns of land use many decades ago appear to have left long-lasting damage to genetic diversity that could threaten evolutionary responses to rapid global change.


Subject(s)
Agriculture , Insecta , Animals , Insecta/genetics , Farms , Biological Evolution , Climate Change , Genetic Variation/genetics , Biodiversity , Ecosystem
4.
Mol Ecol ; 31(21): 5568-5580, 2022 11.
Article in English | MEDLINE | ID: mdl-35984732

ABSTRACT

How invasive species cope with novel selective pressures with limited genetic variation is a fundamental question in molecular ecology. Several mechanisms have been proposed, but they can lack generality. Here, we addressed an alternative solution, polygenic adaptation, wherein traits that arise from multiple combinations of loci may be less sensitive to loss of variation during invasion. We tested the polygenic signal of environmental adaptation of Colorado potato beetle (CPB) introduced in Eurasia. Population genomic analyses showed declining genetic diversity in the eastward expansion of Eurasian populations, and weak population genetic structure (except for the invasion fronts in Asia). Demographic history showed that all populations shared a strong bottleneck about 100 years ago when CPB was introduced to Europe. Genome scans revealed a suite of genes involved in activity regulation functions that are plausibly related to cold stress, including some well-founded functions (e.g., the activity of phosphodiesterase, the G-protein regulator) and discrete functions. Such polygenic architecture supports the hypothesis that polygenic adaptation and potentially genetic redundancy can fuel the adaptation of CPB despite strong genetic depletion, thus representing a promising general mechanism for resolving the genetic paradox of invasion. More broadly, most complex traits based on polygenes may be less sensitive to invasive bottlenecks, thus ensuring the evolutionary success of invasive species in novel environments.


Subject(s)
Coleoptera , Solanum tuberosum , Animals , Coleoptera/genetics , Multifactorial Inheritance/genetics , Introduced Species , Phosphoric Diester Hydrolases/genetics
5.
Glob Chang Biol ; 28(15): 4726-4735, 2022 08.
Article in English | MEDLINE | ID: mdl-35686571

ABSTRACT

Many insects are in clear decline, with monarch butterflies (Danaus plexippus) drawing particular attention as a flagship species. It is well documented that, among migratory populations, numbers of overwintering monarchs have been falling across several decades, but trends among breeding monarchs are less clear. Here, we compile >135,000 monarch observations between 1993 and 2018 from the North American Butterfly Association's annual butterfly count to examine spatiotemporal patterns and potential drivers of adult monarch relative abundance trends across the entire breeding range in eastern and western North America. While the data revealed declines at some sites, particularly the US Northeast and parts of the Midwest, numbers in other areas, notably the US Southeast and Northwest, were unchanged or increasing, yielding a slightly positive overall trend across the species range. Negative impacts of agricultural glyphosate use appeared to be counterbalanced by positive effects of annual temperature, particularly in the US Midwest. Overall, our results suggest that population growth in summer is compensating for losses during the winter and that changing environmental variables have offsetting effects on mortality and/or reproduction. We suggest that density-dependent reproductive compensation when lower numbers arrive each spring is currently able to maintain relatively stable breeding monarch numbers. However, we caution against complacency since accelerating climate change may bring growing threats. In addition, increases of summer monarchs in some regions, especially in California and in the south, may reflect replacement of migratory with resident populations. Nonetheless, it is perhaps reassuring that ubiquitous downward trends in summer monarch abundance are not evident.


Subject(s)
Butterflies , Animal Migration , Animals , North America , Population Dynamics , Seasons
6.
J Exp Biol ; 225(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35403696

ABSTRACT

Applications of key technologies in biomedical research, such as qRT-PCR or LC-MS-based proteomics, are generating large biological (-omics) datasets which are useful for the identification and quantification of biomarkers in any research area of interest. Genome, transcriptome and proteome databases are already available for a number of model organisms including vertebrates and invertebrates. However, there is insufficient information available for protein sequences of certain invertebrates, such as the great pond snail Lymnaea stagnalis, a model organism that has been used highly successfully in elucidating evolutionarily conserved mechanisms of memory function and dysfunction. Here, we used a bioinformatics approach to designing and benchmarking a comprehensive central nervous system (CNS) proteomics database (LymCNS-PDB) for the identification of proteins from the CNS of Lymnaea by LC-MS-based proteomics. LymCNS-PDB was created by using the Trinity TransDecoder bioinformatics tool to translate amino acid sequences from mRNA transcript assemblies obtained from a published Lymnaea transcriptomics database. The blast-style MMSeq2 software was used to match all translated sequences to UniProtKB sequences for molluscan proteins, including those from Lymnaea and other molluscs. LymCNS-PDB contains 9628 identified matched proteins that were benchmarked by performing LC-MS-based proteomics analysis with proteins isolated from the Lymnaea CNS. MS/MS analysis using the LymCNS-PDB database led to the identification of 3810 proteins. Only 982 proteins were identified by using a non-specific molluscan database. LymCNS-PDB provides a valuable tool that will enable us to perform quantitative proteomics analysis of protein interactomes involved in several CNS functions in Lymnaea, including learning and memory and age-related memory decline.


Subject(s)
Computational Biology , Lymnaea , Animals , Benchmarking , Central Nervous System , Chromatography, Liquid , Lymnaea/genetics , Proteins/metabolism , Tandem Mass Spectrometry
7.
Ecol Appl ; 32(5): e2593, 2022 07.
Article in English | MEDLINE | ID: mdl-35340072

ABSTRACT

Global temperatures are generally increasing, and this is leading to a well documented advancement and extension of seasonal activity of many pest insects. Effects of changing precipitation have received less attention, but might be complex because rain and snow are increasing in some places but decreasing in others. This raises the possibility that altered precipitation could accentuate, or even reverse, the effects of rising temperatures on pest outbreaks. We used >592 K aphid suction-trap captures over 15 years, in the heavily farmed central USA, to examine how the activity of Aphis glycines (soybean aphid), Rhopalosiphum maidis (corn aphid), and Rhopalosiphum padi (bird cherry-oat aphid) changed with variation in both temperature and precipitation. Increasing precipitation caused late-season flight activity of A. glycines and early-season activity of R. padi to shift earlier, while increasing temperature did the same for early-season activity of A. glycines and R. maidis. In these cases, precipitation and temperature exhibited directionally similar, but independent, effects. However, precipitation sometimes mediated temperature effects in complex ways. At relatively low temperatures, greater precipitation generally caused late-season flights of R. maidis to occur earlier. However, this pattern was reversed at higher temperatures with precipitation delaying late-season activity. In contrast, greater precipitation delayed peak flights of R. padi at lower temperatures, but caused them to occur earlier at higher temperatures. So, in these two cases the interactive effects of precipitation on temperature were mirror images of one another. When projecting future aphid flight phenology, models that excluded precipitation covariates consistently underpredicted the degree of phenological advance for A. glycines and R. padi, and underpredicted the degree of phenological delay for R. maidis under expected future climates. Overall, we found broad evidence that changing patterns of aphid flight phenology could only be understood by considering both temperature and precipitation changes. In our study region, temperature and precipitation are expected to increase in tandem, but these correlations will be reversed elsewhere. This reinforces the need to include both main and interactive effects of precipitation and temperature when seeking to accurately predict how pest pressure will change with a changing climate.


Subject(s)
Aphids , Fabaceae , Animals , Climate , Seasons , Temperature
8.
Ecol Lett ; 24(9): 1800-1813, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34143928

ABSTRACT

Agricultural intensification is a key suspect among putative drivers of recent insect declines, but an explicit link between historical change in agricultural land cover and insect occurrence is lacking. Determining whether agriculture impacts beneficial insects (e.g. pollinators), is crucial to enhancing agricultural sustainability. Here, we combine large spatiotemporal sets of historical bumble bee and agricultural records to show that increasing cropland extent and decreasing crop richness were associated with declines in over 50% of bumble bee species in the agriculturally intensive Midwest, USA. Critically, we found that high crop diversity was associated with a higher occurrence of many species pre-1950 even in agriculturally dominated areas, but that current agricultural landscapes are devoid of high crop diversity. Our findings suggest that insect conservation and agricultural production may be compatible, with increasing on-farm and landscape-level crop diversity predicted to have positive effects on bumble bees.


Subject(s)
Agriculture , Insecta , Animals , Bees , Pollination
9.
Glob Chang Biol ; 27(1): 151-164, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33064906

ABSTRACT

Over the last century, US agriculture greatly intensified and became industrialized, increasing in inputs and yields while decreasing in total cropland area. In the industrial sector, spatial agglomeration effects are typical, but such changes in the patterns of crop types and diversity would have major implications for the resilience of food systems to global change. Here, we investigate the extent to which agricultural industrialization in the United States was accompanied by agglomeration of crop types, not just overall cropland area, as well as declines in crop diversity. Based on county-level analyses of individual crop land cover area in the conterminous United States from 1840 to 2017, we found a strong and abrupt spatial concentration of most crop types in very recent years. For 13 of the 18 major crops, the widespread belts that characterized early 20th century US agriculture have collapsed, with spatial concentration increasing 15-fold after 2002. The number of counties producing each crop declined from 1940 to 2017 by up to 97%, and their total area declined by up to 98%, despite increasing total production. Concomitantly, the diversity of crop types within counties plummeted: in 1940, 88% of counties grew >10 crops, but only 2% did so in 2017, and combinations of crop types that once characterized entire agricultural regions are lost. Importantly, declining crop diversity with increasing cropland area is a recent phenomenon, suggesting that corresponding environmental effects in agriculturally dominated counties have fundamentally changed. For example, the spatial concentration of agriculture has important consequences for the spread of crop pests, agrochemical use, and climate change. Ultimately, the recent collapse of most agricultural belts and the loss of crop diversity suggest greater vulnerability of US food systems to environmental and economic change, but the spatial concentration of agriculture may also offer environmental benefits in areas that are no longer farmed.


Subject(s)
Agriculture , Crops, Agricultural , Climate Change , Farms , United States
10.
Glob Chang Biol ; 27(18): 4283-4293, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34216186

ABSTRACT

Many animals change feeding habits as they progress through life stages, exploiting resources that vary in space and time. However, complex life histories may bring new risks if rapid environmental change disrupts the timing of these switches. Here, we use abundance times series for a diverse group of herbivorous insects, aphids, to search for trait and environmental characteristics associated with declines. Our meta dataset spanned three world regions and >300 aphid species, tracked at 75 individual sites for 10-50 years. Abundances were generally falling, with median changes of -8.3%, -5.6%, and -0.1% per year in the central USA, northwestern USA, and United Kingdom, respectively. Aphids that obligately alternated between host plants annually and those that were agricultural pests exhibited the steepest declines, relative to species able to persist on the same host plant year-round or those in natural areas. This suggests that host alternation might expose aphids to climate-induced phenology mismatches with one or more of their host plant species, with additional risks from exposure to insecticides and other management efforts. Warming temperatures through time were associated with milder aphid declines or even abundance increases, particularly at higher latitudes. Altogether, while a warming world appeared to benefit some aphid species in some places, most aphid species that had time-sensitive movements among multiple host plants seemed to face greater risk of decline. More generally, this suggests that recent human-induced rapid environmental change is rebalancing the risks and rewards associated with complex life histories.


Subject(s)
Aphids , Animals , Climate , Climate Change , Herbivory , Humans , Plants
11.
Glob Chang Biol ; 27(12): 2702-2714, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33749964

ABSTRACT

Some insect populations are experiencing dramatic declines, endangering the crucial ecosystem services they provide. Yet, other populations appear robust, highlighting the need to better define patterns and underlying drivers of recent change in insect numbers. We examined abundance and biodiversity trends for North American butterflies using a unique citizen-science dataset that has recorded observations of over 8 million butterflies across 456 species, 503 sites, nine ecoregions, and 26 years. Butterflies are a biodiverse group of pollinators, herbivores, and prey, making them useful bellwethers of environmental change. We found great heterogeneity in butterfly species' abundance trends, aggregating near zero, but with a tendency toward decline. There was strong spatial clustering, however, into regions of increase, decrease, or relative stasis. Recent precipitation and temperature appeared to largely drive these patterns, with butterflies generally declining at increasingly dry and hot sites but increasing at relatively wet or cool sites. In contrast, landscape and butterfly trait predictors had little influence, though abundance trends were slightly more positive around urban areas. Consistent with varying responses by different species, no overall directional change in butterfly species richness or evenness was detected. Overall, a mosaic of butterfly decay and rebound hotspots appeared to largely reflect geographic variability in climate drivers. Ongoing controversy about insect declines might dissipate with a shift in focus to the causes of heterogeneous responses among taxa and sites, with climate change emerging as a key suspect when pollinator communities are broadly impacted.


Subject(s)
Butterflies , Animals , Biodiversity , Climate Change , Ecosystem , North America
12.
Int J Educ Dev ; 79: 102283, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33012970

ABSTRACT

This article reflects upon the history of the Journal, its evolving nature and rationale and upon possibilities and priorities for the future in what are uncertain times for all.

13.
Ecol Appl ; 29(7): e01955, 2019 10.
Article in English | MEDLINE | ID: mdl-31199539

ABSTRACT

Multiple global change drivers are increasing the present and future novelty of environments and ecological communities. However, most assessments of environmental novelty have focused only on future climate and were conducted at scales too broad to be useful for land management or conservation. Here, using historical county-level data sets of agricultural land use, forest composition, and climate, we conduct a regional-scale assessment of environmental novelty for Wisconsin landscapes from ca. 1890 to 2012. Agricultural land-use data include six cropland types, livestock densities for four livestock species, and human populations. Forestry data comprise biomass-weighted relative abundances for 15 tree genera. Climate data comprise seasonal means for temperature and precipitation. We found that forestry and land use are the strongest cause of environmental novelty (NoveltyForest  = 3.66, NoveltyAg  = 2.83, NoveltyClimate  = 1.60, with Wisconsin's forests transformed by early 20th-century logging and its legacies and multiple waves of agricultural innovation and obsolescence. Climate change is the smallest contributor to contemporary novelty, with precipitation signals stronger than temperature. Magnitudes and causes of environmental novelty are strongly spatially patterned, with novelty in southern Wisconsin roughly twice that in northern Wisconsin. Forestry is the most important cause of novelty in the north, land use and climate change are jointly important in the southwestern Wisconsin, and land use and forest composition are most important in central and eastern Wisconsin. Areas of high regional novelty tend also to be areas of high local change, but local change has not pushed all counties beyond regional baselines. Seven counties serve as the best historical analogues for over one-half of contemporary Wisconsin counties (40/72), and so can offer useful historical counterparts for contemporary systems and help managers coordinate to tackle similar environmental challenges. Multi-dimensional environmental novelty analyses, like those presented here, can help identify the best historical analogues for contemporary ecosystems, places where new management rules and practices may be needed because novelty is already high, and the main causes of novelty. Separating regional novelty clearly from local change and measuring both across many dimensions and at multiple scales thus helps advance ecology and sustainability science alike.


Subject(s)
Ecosystem , Forestry , Forests , Humans , Trees , Wisconsin
14.
Mol Ecol ; 26(22): 6284-6300, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28857332

ABSTRACT

The ability of insect pests to rapidly and repeatedly adapt to insecticides has long challenged entomologists and evolutionary biologists. Since Crow's seminal paper on insecticide resistance in 1957, new data and insights continue to emerge that are relevant to the old questions about how insecticide resistance evolves: such as whether it is predominantly mono- or polygenic, and evolving from standing vs. de novo genetic variation. Many studies support the monogenic hypothesis, and current management recommendations assume single- or two-locus models. But inferences could be improved by integrating data from a broader sample of pest populations and genomes. Here, we generate evidence relevant to these questions by applying a landscape genomics framework to the study of insecticide resistance in a major agricultural pest, Colorado potato beetle, Leptinotarsa decemlineata (Say). Genome-environment association tests using genomic variation from 16 populations spanning gradients of landscape variables associated with insecticide exposure over time revealed 42 strong candidate insecticide resistance genes, with potentially overlapping roles in multiple resistance mechanisms. Measurements of resistance to a widely used insecticide, imidacloprid, among 47 L. decemlineata populations revealed heterogeneity at a small (2 km) scale and no spatial signature of origin or spread throughout the landscape. Analysis of nucleotide diversity suggested candidate resistance loci have undergone varying degrees of selective sweeps, often maintaining similar levels of nucleotide diversity to neutral loci. This study suggests that many genes are involved in insecticide resistance in L. decemlineata and that resistance likely evolves from both de novo and standing genetic variation.


Subject(s)
Coleoptera/genetics , Genetics, Population , Insecticide Resistance/genetics , Multifactorial Inheritance , Animals , Genes, Insect , Genomics , Genotype , Polymorphism, Single Nucleotide , Spatial Analysis , Wisconsin
15.
J Econ Entomol ; 108(1): 326-38, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26470137

ABSTRACT

Soybean aphid, Aphis glycines Matsumura, a pest of soybean, Glycine max (L.) Merr., and native of Asia, invaded North America sometime before 2000 and rapidly became the most significant insect pest of soybean in the upper Midwest. Plant resistance, a key component of integrated pest management, has received significant attention in the past decade, and several resistance (Rag) genes have been identified. However, the efficacy of Rag (Resistance to Aphis glycines) genes in suppressing aphid abundance has been challenged by the occurrence of soybean aphids capable of overcoming Rag gene-mediated resistance. Although the occurrence of these Rag virulent biotypes poses a serious threat to effective and sustainable management of soybean aphid, little is known about the current abundance of biotypes in North America. The objective of this research was to determine the distribution of Rag virulent soybean aphids in Wisconsin. Soybean aphids were collected from Wisconsin during the summers of 2012 and 2013, and assayed for Rag1, Rag2, and Rag1+2 virulence using no-choice tests in a greenhouse. One clone from Monroe County in 2012 reacted like biotype 4, three clones in different counties in 2013 responded like biotype 2, and eight others expressed varying degrees of Rag virulence. Rag virulence in 2013 was observed in aphids from 33% of the sampled sites and was accounted for by just 4.5% of sampled clones, although this is likely a conservative estimate. No-choice test results are discussed in light of current questions on the biology, ecology, and population genetics of soybean aphid.


Subject(s)
Aphids/pathogenicity , Glycine max/genetics , Herbivory , Animals , Wisconsin
16.
Environ Entomol ; 53(1): 50-56, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37983130

ABSTRACT

Arthropods use a variety of environmental cues to navigate between and locate hosts. In agricultural systems, clarifying the relevant cues and their effects on arthropod behavior can inform management practices to reduce or inhibit the activity of arthropod pests. The lesser mealworm Alphitobius diaperinus (Panzer) is a ubiquitous arthropod pest of broiler house chicken production, and while the patterns of movement and behavior of A. diaperinus are well documented, the specific environmental factors that govern these patterns are not known. We conducted behavioral assays testing the response of A. diaperinus adults and larvae to different wavelengths of light and to the presence of water. Alphitobius diaperinus displayed a significant repulsion from white, green, red, and blue light, while larvae consistently sought shelter and displayed no behavioral change in response to light. Dehydrated adult beetles displayed an attraction to water while hydrated beetles displayed a repulsion to water. Regardless of the availability of water, dehydrated beetles displayed a reduced repulsion from light. Taken together, these results indicate that A. diaperinus will hide from sources of light unless they are dehydrated. Knowledge of the environmental cues that influence the behavior of A. diaperinus could be used to improve methods of trapping, monitoring, and controlling populations of A. diaperinus in experimental and commercial settings.


Subject(s)
Coleoptera , Tenebrio , Animals , Chickens , Phototaxis , Larva , Water
17.
ChemSusChem ; : e202400824, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924470

ABSTRACT

With the continuous increase in food production to support the growing population, ensuring agricultural sustainability using crop-protecting agents, such as pesticides, is vital. Conventional pesticides pose significant environmental risks, prompting the need for eco-friendly alternatives. This study reports the synthesis of new amide-based insecticidal active ingredients from biomass-derived monomers, specifically furfural and vanillin. The process involves reductive amination followed by carbonylation. The synthesis of the furfural-based carbamate yield reaches a cumulative 88%, with catalysts Rh/Al2O3 and La(OTf)3 being recyclable at each stage. Insecticidal activity assessments reveal that the furfural carbamate exhibits competitive performance, achieving an LC50 of 6.35 µg/cm², compared to 6.27 µg/cm² for carbofuran. Ecotoxicity predictions indicate significantly lower toxicity levels toward non-target aquatic and terrestrial species. The importance of the low octanol-water partition coefficient of the biobased carbamate, attributed to the oxygen heteroatom and electron density of the furan ring, is discussed in detail. Building on these promising results, the synthesis strategy was extended to six other biobased aldehydes, resulting in a diverse portfolio of biomass-derived carbamates. A techno-economic analysis reveals a minimum selling price of 11.1$/kg, only half that of comparable carbamates, demonstrating the economic viability of these new biobased insecticides.

18.
Pest Manag Sci ; 80(3): 1008-1015, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37831545

ABSTRACT

BACKGROUND: Rising global temperatures are associated with emerging insect pests, reflecting earlier and longer insect activity, faster development, more generations per year and changing species' ranges. Insecticides are often the first tools available to manage these new threats. In the southeastern US, sweet potato whitefly (Bemisia tabaci) has recently become the major threat to vegetable production. We used data from a multi-year, regional whitefly monitoring network to search for climate, land use, and management correlates of whitefly activity. RESULTS: Strikingly, whiteflies were detected earlier and grew more abundant in landscapes with greater insecticide use, but only when temperatures were also relatively warm. Whitefly outbreaks in hotter conditions were not associated with specific active ingredients used to suppress whiteflies, which would be consistent with a regional disruption of biocontrol following sprays for other pests. In addition, peak whitefly detections occurred earlier in areas with more vegetable production, but later with more cotton production, consistent with whiteflies moving among crops. CONCLUSION: Altogether, our findings suggest possible links between warmer temperatures, more abundant pests, and frequent insecticide applications disrupting biological control, though this remains to be explicitly demonstrated. Climate-initiated pesticide treadmills of this type may become an increasingly common driver of emerging pest outbreaks as global change accelerates. © 2023 Society of Chemical Industry.


Subject(s)
Hemiptera , Insecticides , Animals , Temperature , Insecta , Crops, Agricultural , Vegetables
19.
Environ Entomol ; 53(3): 433-441, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38531822

ABSTRACT

Potato leafhopper (PLH), Empoasca fabae Harris (Hemiptera: Cicadellidae), is an economic pest of a variety of crops that migrates between overwintering sites in the southern United States and northern breeding grounds. Since 2005, the Midwest Suction Trap Network (STN) has monitored the magnitude and timing of aerially dispersing aphids' activity, but the potential of the network to monitor other taxa is only beginning to be explored. Here, we use the Midwest STN to examine how the magnitude and timing of PLH activity vary with weather, cropland cover, and time of year. We found that weekly PLH activity increased early in the season (May-June) with increasing degree day accumulation and decreased mid-season (July-August) with increasing occurrence of rain. The first detections occurred earlier in southern latitudes, while the last detections occurred sooner, when there was more surrounding potato land cover, and later over time between 2018 and 2021 and in southern latitudes. PLH activity was thus longer in duration in southern latitudes and has continued to extend later into the year overall. Resolving uncertainty about how well the Midwest STN captures migratory activity and how closely suction trap detections reflect local population densities in crop fields remain important research priorities before the potential of the Midwest STN for PLH monitoring can be realized. Still, observed patterns suggest that PLH could increase in economic importance as insects disperse over larger portions of the growing season in the warming, agriculturally productive US Midwest and that the STN can become a useful tool to monitor these changes.


Subject(s)
Hemiptera , Seasons , Animals , Hemiptera/physiology , Insect Control , Flight, Animal
20.
Sci Adv ; 9(12): eadd3403, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36961898

ABSTRACT

Long-term memory formation is energetically costly. Neural mechanisms that guide an animal to identify fruitful associations therefore have important survival benefits. Here, we elucidate a circuit mechanism in Lymnaea, which enables past memory to shape new memory formation through changes in perception. Specifically, strong classical conditioning drives a positive shift in perception that facilitates the robust learning of a subsequent and otherwise ineffective weak association. Circuit dissection approaches reveal the neural control network responsible, characterized by a mutual inhibition motif. This both sets perceptual state and acts as the master controller for gating new learning. Pharmacological circuit manipulation in vivo fully substitutes for strong paradigm learning, shifting the network into a more receptive state to enable subsequent weak paradigm learning. Thus, perceptual change provides a conduit to link past and future memory storage. We propose that this mechanism alerts animals to learning-rich periods, lowering the threshold for new memory acquisition.


Subject(s)
Learning , Memory , Animals , Learning/physiology , Memory/physiology , Memory, Long-Term , Perception
SELECTION OF CITATIONS
SEARCH DETAIL