Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Immunol ; 24(4): 637-651, 2023 04.
Article in English | MEDLINE | ID: mdl-36959291

ABSTRACT

Thymocytes bearing autoreactive T cell receptors (TCRs) are agonist-signaled by TCR/co-stimulatory molecules to either undergo clonal deletion or to differentiate into specialized regulatory T (Treg) or effector T (Teff) CD4+ cells. How these different fates are achieved during development remains poorly understood. We now document that deletion and differentiation are agonist-signaled at different times during thymic selection and that Treg and Teff cells both arise after clonal deletion as alternative lineage fates of agonist-signaled CD4+CD25+ precursors. Disruption of agonist signaling induces CD4+CD25+ precursors to initiate Foxp3 expression and become Treg cells, whereas persistent agonist signaling induces CD4+CD25+ precursors to become IL-2+ Teff cells. Notably, we discovered that transforming growth factor-ß induces Foxp3 expression and promotes Treg cell development by disrupting weaker agonist signals and that Foxp3 expression is not induced by IL-2 except under non-physiological in vivo conditions. Thus, TCR signaling disruption versus persistence is a general mechanism of lineage fate determination in the thymus that directs development of agonist-signaled autoreactive thymocytes.


Subject(s)
Clonal Deletion , Thymocytes , Thymocytes/metabolism , Interleukin-2/genetics , Interleukin-2/metabolism , CD4-Positive T-Lymphocytes/metabolism , Thymus Gland/metabolism , Receptors, Antigen, T-Cell/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , T-Lymphocytes, Regulatory/metabolism
2.
Cell Mol Life Sci ; 80(3): 76, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36847849

ABSTRACT

Invariant natural killer T (iNKT) cells correspond to a population of thymus-generated T cells with innate-like characteristics and effector functions. Among the various iNKT subsets, NKT17 is the only subset that produces the proinflammatory cytokine IL-17. But, how NKT17 cells acquire this ability and what would selectively trigger their activation remain incompletely understood. Here, we identified the cytokine receptor DR3 being specifically expressed on thymic NKT17 cells and mostly absent on other thymic iNKT subsets. Moreover, DR3 ligation promoted the in vivo activation of thymic NKT17 cells and provided costimulatory effects upon agonistic α-GalCer stimulation. Thus, we identified a specific surface marker for thymic NKT17 cells that triggers their activation and augments their effector functions both in vivo and in vitro. These findings provide new insights for deciphering the role and function of murine NKT17 cells and for understanding the development and activation mechanisms of iNKT cells in general.


Subject(s)
Natural Killer T-Cells , Receptors, Tumor Necrosis Factor, Member 25 , Thymus Gland , Animals , Mice , Cytokines , Receptors, Cytokine , Receptors, Tumor Necrosis Factor, Member 25/metabolism
3.
Cell Mol Life Sci ; 78(15): 5789-5805, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34129058

ABSTRACT

Integrin CD103 mediates the adhesion and tissue retention of T cells by binding to E-cadherin which is abundant on epithelial cells. Notably, CD103 is highly expressed on CD8 T cells but conspicuously absent on most CD4 T cells. The mechanism controlling such lineage-specific expression of CD103 remains unclear. Using a series of genetically engineered mouse models, here, we demonstrate that the regulatory mechanism of CD103 expression is distinct between CD4 and CD8 T cells, and that the transcription factor Runx3 plays an important but not an essential role in this process. We further found that the availability of integrin ß7 which heterodimerizes with CD103 was necessary but also constrained the surface expression of CD103. Notably, the forced surface expression of CD103 did not significantly alter the thymic development of conventional T cells but severely impaired the generation of MHC-II-restricted TCR transgenic T cells, revealing previously unappreciated aspects of CD103 in the selection and maturation of CD4 T cells. Unlike its effect on CD4 T cell development, however, CD103 overexpression did not significantly affect CD4 T cells in peripheral tissues. Moreover, the frequency and number of CD4 T cells in the small intestine epithelium did not increase even though E-cadherin is highly expressed in this tissue. Collectively, these results suggest that most mature CD4 T cells are refractory to the effects of CD103 expression, and that they presumably utilize CD103-independent pathways to control their tissue retention and residency.


Subject(s)
Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Integrin alpha Chains/metabolism , Animals , Cadherins/metabolism , Female , Integrin beta Chains/metabolism , Intestinal Mucosa/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
4.
Eur J Immunol ; 50(7): 986-999, 2020 07.
Article in English | MEDLINE | ID: mdl-32144749

ABSTRACT

SOCS3 is a cytosolic inhibitor of cytokine signaling that suppresses the activation of cytokine receptor-associated JAK kinases. Mechanistically, SOCS3 is recruited to a site in the cytokine receptors known as the SOCS3-interaction motif, and then binds JAK molecules to inhibit their kinase activity. The SOCS3-interaction motif is found in receptors of the gp130 cytokine family but mostly absent from other cytokine receptors, including γc. Thus, SOCS3 has been considered a selective suppressor of gp130 family cytokines, but not γc cytokines. Considering that γc signaling induces SOCS3 expression in T cells, here we revisited the role of SOCS3 on γc signaling. Using SOCS3 transgenic mice, we found that increased abundance of SOCS3 not only suppressed signaling of the gp130 family cytokine IL-6, but also signaling of the γc family cytokine IL-7. Consequently, SOCS3 transgenic mice were impaired in IL-7-dependent T cell development in the thymus and the homeostasis of mature T cells in peripheral tissues. Moreover, enforced SOCS3 expression interfered with the generation of Foxp3+ regulatory T cells that requires signaling by the γc family cytokine IL-2. Collectively, we report an underappreciated role for SOCS3 in suppressing γc cytokine signaling, effectively expanding its scope of target cytokines in T cell immunity.


Subject(s)
Cytokines/immunology , Immunity, Cellular , Signal Transduction/immunology , Suppressor of Cytokine Signaling 3 Protein/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Female , Forkhead Transcription Factors/immunology , Male , Mice , T-Lymphocytes, Regulatory/cytology
5.
Mucosal Immunol ; 15(5): 882-895, 2022 05.
Article in English | MEDLINE | ID: mdl-35778600

ABSTRACT

The chemokine receptor CCR9 equips T cells with the ability to respond to CCL25, a chemokine that is highly expressed in the thymus and the small intestine (SI). Notably, CCR9 is mostly expressed on CD8 but not on CD4 lineage T cells, thus imposing distinct tissue tropism on CD4 and CD8 T cells. The molecular basis and the consequences for such a dichotomy, however, have not been fully examined and explained. Here, we demonstrate that the forced expression of CCR9 interferes with the tissue trafficking and differentiation of CD4 T cells in SI intraepithelial tissues. While CCR9 overexpression did not alter CD4 T cell generation in the thymus, the forced expression of CCR9 was detrimental for the proper tissue distribution of CD4 T cells in the periphery, and strikingly also for their terminal differentiation in the gut epithelium. Specifically, the differentiation of SI epithelial CD4 T cells into immunoregulatory CD4+CD8αα+ T cells was impaired by overexpression of CCR9 and conversely increased by the genetic deletion of CCR9. Collectively, our results reveal a previously unappreciated role for CCR9 in the tissue homeostasis and effector function of CD4 T cells in the gut.


Subject(s)
Intraepithelial Lymphocytes , Receptors, CCR , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Intestines , Intraepithelial Lymphocytes/metabolism , Receptors, CCR/genetics , Receptors, CCR/metabolism
6.
Front Immunol ; 13: 767530, 2022.
Article in English | MEDLINE | ID: mdl-35154097

ABSTRACT

Natural killer (NK) cells have been studied extensively in humans and mice for their vital role in the vertebrate innate immune system. They are known to rapidly eliminate tumors or virus infected cells in an immune response utilizing their lytic properties. The natural cytotoxicity receptors (NCRs) NKp30 (NCR3), NKp44 (NCR2), and NKp46 (NCR1) are important mediators of NK-cell cytotoxicity. NKp44 expression was reported for NK cells in humans as well as in some non-human primates and found exclusively on activated NK cells. Previously, no information was available on NKp44 protein expression and its role in porcine lymphocytes due to the lack of species-specific monoclonal antibodies (mAbs). For this study, porcine-specific anti-NKp44 mAbs were generated and their reactivity was tested on blood and tissue derived NK cells in pigs of different age classes. Interestingly, NKp44 expression was detected ex vivo already on resting NK cells; moreover, the frequency of NKp44+ NK cells was higher than that of NKp46+ NK cells in most animals analyzed. Upon in vitro stimulation with IL-2 or IL-15, the frequency of NKp44+ NK cells, as well as the intensity of NKp44 expression at the single cell level, were increased. Since little is known about swine NK cells, the generation of a mAb (clone 54-1) against NKp44 will greatly aid in elucidating the mechanisms underlying the differentiation, functionality, and activation of porcine NK cells.


Subject(s)
Antibodies, Monoclonal/immunology , Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , Natural Cytotoxicity Triggering Receptor 2/immunology , Natural Cytotoxicity Triggering Receptor 2/metabolism , Adolescent , Adult , Animals , Antibodies, Monoclonal/blood , Blood Donors , Cells, Cultured , Female , Humans , Immunization/methods , Immunoglobulin G/blood , Immunoglobulin G/immunology , Interleukin-4/administration & dosage , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Natural Cytotoxicity Triggering Receptor 1/metabolism , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , Swine , Young Adult
7.
JCI Insight ; 6(18)2021 09 22.
Article in English | MEDLINE | ID: mdl-34549726

ABSTRACT

Invariant NKT (iNKT) cells are potent immunomodulatory cells that acquire effector function during their development in the thymus. IL-17-producing iNKT cells are commonly referred to as NKT17 cells, and they are unique among iNKT cells to express the heparan sulfate proteoglycan CD138 and the transcription factor RORγt. Whether and how CD138 and RORγt contribute to NKT17 cell differentiation, and whether there is an interplay between RORγt and CD138 expression to control iNKT lineage fate, remain mostly unknown. Here, we showed that CD138 expression was only associated with and not required for the differentiation and IL-17 production of NKT17 cells. Consequently, CD138-deficient mice still generated robust numbers of IL-17-producing RORγt+ NKT17 cells. Moreover, forced expression of RORγt significantly promoted the generation of thymic NKT17 cells, but did not induce CD138 expression on non-NKT17 cells. These results indicated that NKT17 cell generation and IL-17 production were driven by RORγt, employing mechanisms that were independent of CD138. Therefore, our study effectively dissociated CD138 expression from the RORγt-driven molecular pathway of NKT17 cell differentiation.


Subject(s)
Cell Differentiation , Interleukin-17/metabolism , Natural Killer T-Cells/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Syndecan-1/genetics , Syndecan-1/metabolism , Animals , CD4 Antigens/metabolism , CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/physiology , Cell Differentiation/genetics , Female , Granzymes/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Natural Killer T-Cells/physiology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Phenotype , Pore Forming Cytotoxic Proteins/metabolism , Thymocytes/metabolism
8.
Front Immunol ; 12: 642856, 2021.
Article in English | MEDLINE | ID: mdl-34054809

ABSTRACT

Invariant NKT (iNKT) cells are thymus-generated innate-like T cells, comprised of three distinct subsets with divergent effector functions. The molecular mechanism that drives the lineage trifurcation of immature iNKT cells into the NKT1, NKT2, and NKT17 subsets remains a controversial issue that remains to be resolved. Because cytokine receptor signaling is necessary for iNKT cell generation, cytokines are proposed to contribute to iNKT subset differentiation also. However, the precise roles and requirements of cytokines in these processes are not fully understood. Here, we show that IL-2Rß, a nonredundant component of the IL-15 receptor complex, plays a critical role in both the development and differentiation of thymic iNKT cells. While the induction of IL-2Rß expression on postselection thymocytes is necessary to drive the generation of iNKT cells, surprisingly, premature IL-2Rß expression on immature iNKT cells was detrimental to their development. Moreover, while IL-2Rß is necessary for NKT1 generation, paradoxically, we found that the increased abundance of IL-2Rß suppressed NKT1 generation without affecting NKT2 and NKT17 cell differentiation. Thus, the timing and abundance of IL-2Rß expression control iNKT lineage fate and development, thereby establishing cytokine receptor expression as a critical regulator of thymic iNKT cell differentiation.


Subject(s)
Interleukin-2 Receptor beta Subunit/physiology , Natural Killer T-Cells/physiology , Thymus Gland/immunology , Animals , Cell Differentiation , Interleukin-15/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Natural Killer T-Cells/classification , Natural Killer T-Cells/cytology , STAT5 Transcription Factor/physiology
9.
JCI Insight ; 6(21)2021 11 08.
Article in English | MEDLINE | ID: mdl-34747370

ABSTRACT

Foxp3+ Tregs are potent immunosuppressive CD4+ T cells that are critical to maintain immune quiescence and prevent autoimmunity. Both the generation and maintenance of Foxp3+ Tregs depend on the cytokine IL-2. Hence, the expression of the IL-2 receptor α-chain (CD25) is not only considered a specific marker, but also a nonredundant requirement for Tregs. Here, we report that Foxp3+ Tregs in the small intestine (SI) epithelium, a critical barrier tissue, are exempt from such an IL-2 requirement, since they had dramatically downregulated CD25 expression, showed minimal STAT5 phosphorylation ex vivo, and were unable to respond to IL-2 in vitro. Nonetheless, SI epithelial Tregs survived and were present at the same frequency as in other lymphoid organs, and they retained potent suppressor function that was associated with high levels of CTLA-4 expression and the production of copious amounts of IL-10. Moreover, adoptive transfer experiments of Foxp3+ Tregs revealed that such IL-2-independent survival and effector functions were imposed by the SI epithelial tissue, suggesting that tissue adaptation is a mechanism that tailors the effector function and survival requirements of Foxp3+ Tregs specific to the tissue environment.


Subject(s)
Epithelium/metabolism , Forkhead Transcription Factors/metabolism , Interleukin-2/metabolism , Intestine, Small/physiopathology , T-Lymphocytes, Regulatory/metabolism , Animals , Homeostasis , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL