Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Chem Mater ; 36(2): 772-785, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38282687

ABSTRACT

We used data-driven methods to understand the formation of impurity phases in BiFeO3 thin-film synthesis through the sol-gel technique. Using a high-quality dataset of 331 synthesis procedures and outcomes extracted manually from 177 scientific articles, we trained decision tree models that reinforce important experimental heuristics for the avoidance of phase impurities but ultimately show limited predictive capability. We find that several important synthesis features, identified by our model, are often not reported in the literature. To test our ability to correctly impute missing synthesis parameters, we attempted to reproduce nine syntheses from the literature with varying degrees of "missingness". We demonstrate how a text-mined dataset can be made useful by informing new controlled experiments and forming a better understanding for impurity phase formation in this complex oxide system.

2.
Sci Adv ; 9(23): eadg8180, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37294767

ABSTRACT

Synthesis prediction is a key accelerator for the rapid design of advanced materials. However, determining synthesis variables such as the choice of precursor materials is challenging for inorganic materials because the sequence of reactions during heating is not well understood. In this work, we use a knowledge base of 29,900 solid-state synthesis recipes, text-mined from the scientific literature, to automatically learn which precursors to recommend for the synthesis of a novel target material. The data-driven approach learns chemical similarity of materials and refers the synthesis of a new target to precedent synthesis procedures of similar materials, mimicking human synthesis design. When proposing five precursor sets for each of 2654 unseen test target materials, the recommendation strategy achieves a success rate of at least 82%. Our approach captures decades of heuristic synthesis data in a mathematical form, making it accessible for use in recommendation engines and autonomous laboratories.


Subject(s)
Machine Learning , Humans , Chemistry Techniques, Synthetic
3.
PLoS One ; 18(2): e0281147, 2023.
Article in English | MEDLINE | ID: mdl-36724184

ABSTRACT

The ongoing COVID-19 pandemic produced far-reaching effects throughout society, and science is no exception. The scale, speed, and breadth of the scientific community's COVID-19 response lead to the emergence of new research at the remarkable rate of more than 250 papers published per day. This posed a challenge for the scientific community as traditional methods of engagement with the literature were strained by the volume of new research being produced. Meanwhile, the urgency of response lead to an increasingly prominent role for preprint servers and a diffusion of relevant research through many channels simultaneously. These factors created a need for new tools to change the way scientific literature is organized and found by researchers. With this challenge in mind, we present an overview of COVIDScholar https://covidscholar.org, an automated knowledge portal which utilizes natural language processing (NLP) that was built to meet these urgent needs. The search interface for this corpus of more than 260,000 research articles, patents, and clinical trials served more than 33,000 users at an average of 2,000 monthly active users and a peak of more than 8,600 weekly active users in the summer of 2020. Additionally, we include an analysis of trends in COVID-19 research over the course of the pandemic with a particular focus on the first 10 months, which represents a unique period of rapid worldwide shift in scientific attention.


Subject(s)
COVID-19 , Humans , Pandemics , Publications , Natural Language Processing
4.
Patterns (N Y) ; 3(4): 100488, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35465225

ABSTRACT

A bottleneck in efficiently connecting new materials discoveries to established literature has arisen due to an increase in publications. This problem may be addressed by using named entity recognition (NER) to extract structured summary-level data from unstructured materials science text. We compare the performance of four NER models on three materials science datasets. The four models include a bidirectional long short-term memory (BiLSTM) and three transformer models (BERT, SciBERT, and MatBERT) with increasing degrees of domain-specific materials science pre-training. MatBERT improves over the other two BERTBASE-based models by 1%∼12%, implying that domain-specific pre-training provides measurable advantages. Despite relative architectural simplicity, the BiLSTM model consistently outperforms BERT, perhaps due to its domain-specific pre-trained word embeddings. Furthermore, MatBERT and SciBERT models outperform the original BERT model to a greater extent in the small data limit. MatBERT's higher-quality predictions should accelerate the extraction of structured data from materials science literature.

5.
Sci Data ; 9(1): 234, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618761

ABSTRACT

Gold nanoparticles are highly desired for a range of technological applications due to their tunable properties, which are dictated by the size and shape of the constituent particles. Many heuristic methods for controlling the morphological characteristics of gold nanoparticles are well known. However, the underlying mechanisms controlling their size and shape remain poorly understood, partly due to the immense range of possible combinations of synthesis parameters. Data-driven methods can offer insight to help guide understanding of these underlying mechanisms, so long as sufficient synthesis data are available. To facilitate data mining in this direction, we have constructed and made publicly available a dataset of codified gold nanoparticle synthesis protocols and outcomes extracted directly from the nanoparticle materials science literature using natural language processing and text-mining techniques. This dataset contains 5,154 data records, each representing a single gold nanoparticle synthesis article, filtered from a database of 4,973,165 publications. Each record contains codified synthesis protocols and extracted morphological information from a total of 7,608 experimental and 12,519 characterization paragraphs.

6.
Sci Data ; 9(1): 231, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614129

ABSTRACT

The development of a materials synthesis route is usually based on heuristics and experience. A possible new approach would be to apply data-driven approaches to learn the patterns of synthesis from past experience and use them to predict the syntheses of novel materials. However, this route is impeded by the lack of a large-scale database of synthesis formulations. In this work, we applied advanced machine learning and natural language processing techniques to construct a dataset of 35,675 solution-based synthesis procedures extracted from the scientific literature. Each procedure contains essential synthesis information including the precursors and target materials, their quantities, and the synthesis actions and corresponding attributes. Every procedure is also augmented with the reaction formula. Through this work, we are making freely available the first large dataset of solution-based inorganic materials synthesis procedures.

SELECTION OF CITATIONS
SEARCH DETAIL