Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Traffic ; 21(7): 463-478, 2020 07.
Article in English | MEDLINE | ID: mdl-32378283

ABSTRACT

The dynein adaptor Drosophila Bicaudal D (BicD) is auto-inhibited and activates dynein motility only after cargo is bound, but the underlying mechanism is elusive. In contrast, we show that the full-length BicD/F684I mutant activates dynein processivity even in the absence of cargo. Our X-ray structure of the C-terminal domain of the BicD/F684I mutant reveals a coiled-coil registry shift; in the N-terminal region, the two helices of the homodimer are aligned, whereas they are vertically shifted in the wild-type. One chain is partially disordered and this structural flexibility is confirmed by computations, which reveal that the mutant transitions back and forth between the two registries. We propose that a coiled-coil registry shift upon cargo-binding activates BicD for dynein recruitment. Moreover, the human homolog BicD2/F743I exhibits diminished binding of cargo adaptor Nup358, implying that a coiled-coil registry shift may be a mechanism to modulate cargo selection for BicD2-dependent transport pathways.


Subject(s)
Drosophila Proteins , Dyneins , Animals , Cell Movement , Drosophila Proteins/genetics , Dyneins/genetics , Dyneins/metabolism , Humans , Protein Domains , Registries
2.
Biochemistry ; 58(50): 5085-5097, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31756096

ABSTRACT

Nup358 is a protein subunit of the nuclear pore complex that recruits the opposing microtubule motors kinesin-1 and dynein [via the dynein adaptor Bicaudal D2 (BicD2)] to the nuclear envelope. This pathway is important for positioning of the nucleus during the early steps of mitotic spindle assembly and also essential for an important process in brain development. It is unknown whether dynein and kinesin-1 interact with Nup358 simultaneously or whether they compete. Here, we have reconstituted and characterized a minimal complex of kinesin-1 light chain 2 (KLC2) and Nup358. The proteins interact through a W-acidic motif in Nup358, which is highly conserved among vertebrates but absent in insects. While Nup358 and KLC2 form predominantly monomers, their interaction results in the formation of 2:2 complexes, and the W-acidic motif is required for the oligomerization. In active motor complexes, BicD2 and KLC2 each form dimers. Notably, we show that the dynein adaptor BicD2 and KLC2 interact simultaneously with Nup358, resulting in the formation of 2:2:2 complexes. Mutation of the W-acidic motif results in the formation of 1:1:1 complexes. On the basis of our data, we propose that Nup358 recruits simultaneously one kinesin-1 motor and one dynein motor via BicD2 to the nucleus. We hypothesize that the binding sites are close enough to promote direct interactions between these motor recognition domains, which may be important for the regulation of the motility of these opposing motors. Our data provide important insights into a nuclear positioning pathway that is crucial for brain development and faithful chromosome segregation.


Subject(s)
Microtubule-Associated Proteins/metabolism , Molecular Chaperones/metabolism , Nuclear Pore Complex Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Humans , Molecular Chaperones/chemistry , Nuclear Pore Complex Proteins/chemistry , Protein Binding
3.
Biochemistry ; 57(46): 6538-6550, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30345745

ABSTRACT

Dynein adaptor proteins such as Bicaudal D2 (BicD2) are integral components of the dynein transport machinery, as they recognize cargoes for cell cycle-specific transport and link them to the motor complex. Human BicD2 switches from selecting secretory and Golgi-derived vesicles for transport in G1 and S phase (by recognizing Rab6GTP), to selecting the nucleus for transport in G2 phase (by recognizing nuclear pore protein Nup358), but the molecular mechanisms governing this switch are elusive. Here, we have developed a quantitative model for BicD2/cargo interactions that integrates affinities, oligomeric states, and cellular concentrations of the reactants. BicD2 and cargo form predominantly 2:2 complexes. Furthermore, the affinity of BicD2 toward its cargo Nup358 is higher than that toward Rab6GTP. Based on our calculations, an estimated 1000 BicD2 molecules per cell would be recruited to the nucleus through Nup358 in the absence of regulation. Notably, RanGTP is a negative regulator of the Nup358/BicD2 interaction that weakens the affinity by a factor of 10 and may play a role in averting dynein recruitment to the nucleus outside of the G2 phase. However, our quantitative model predicts that an additional negative regulator remains to be identified. In the absence of negative regulation, the affinity of Nup358 would likely be sufficient to recruit BicD2 to the nucleus in G2 phase. Our quantitative model makes testable predictions of how cellular transport events are orchestrated. These transport processes are important for brain development, cell cycle control, signaling, and neurotransmission at synapses.


Subject(s)
Cell Nucleus/metabolism , Microtubule-Associated Proteins/metabolism , Molecular Chaperones/metabolism , Nuclear Pore Complex Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Biological Transport , HeLa Cells , Humans , Microtubule-Associated Proteins/chemistry , Models, Molecular , Molecular Chaperones/chemistry , Nuclear Pore Complex Proteins/chemistry , rab GTP-Binding Proteins/chemistry
4.
Molecules ; 22(7)2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28686181

ABSTRACT

Many prescriptions of traditional medicines (TMs), whose efficacy has been tested in clinical practice, have great therapeutic value and represent an excellent resource for drug discovery. Research into single compounds of TMs, such as artemisinin from Artemisia annua L., has achieved great success; however, it has become evident that a TM prescription (which frequently contains various herbs or other components) has a synergistic effect in effecting a cure or reducing toxicity. Network pharmacology targets biological networks and analyzes the links among drugs, targets, and diseases in those networks. Comprehensive, systematic research into network pharmacology is consistent with the perspective of holisticity, which is a main characteristic of many TMs. By means of network pharmacology, research has demonstrated that many a TM show a synergistic effect by acting at different levels on multiple targets and pathways. This approach effectively bridges the gap between modern medicine and TM, and it greatly facilitates studies into the synergistic actions of TMs. There are different kinds of synergistic effects with TMs, such as synergy among herbs, effective parts, and pure compounds; however, for various reasons, new drug discovery should at present focus on synergy among pure compounds.


Subject(s)
Drug Synergism , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Medicine, Traditional/methods , Drug Discovery/methods , Drug Interactions , Drugs, Chinese Herbal/toxicity , Humans
5.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719748

ABSTRACT

Rab6 is a key modulator of protein secretion. The dynein adapter Bicaudal D2 (BicD2) recruits the motors cytoplasmic dynein and kinesin-1 to Rab6GTP-positive vesicles for transport; however, it is unknown how BicD2 recognizes Rab6. Here, we establish a structural model for recognition of Rab6GTP by BicD2, using structure prediction and mutagenesis. The binding site of BicD2 spans two regions of Rab6 that undergo structural changes upon the transition from the GDP- to GTP-bound state, and several hydrophobic interface residues are rearranged, explaining the increased affinity of the active GTP-bound state. Mutations of Rab6GTP that abolish binding to BicD2 also result in reduced co-migration of Rab6GTP/BicD2 in cells, validating our model. These mutations also severely diminished the motility of Rab6-positive vesicles in cells, highlighting the importance of the Rab6GTP/BicD2 interaction for overall motility of the multi-motor complex that contains both kinesin-1 and dynein. Our results provide insights into trafficking of secretory and Golgi-derived vesicles and will help devise therapies for diseases caused by BicD2 mutations, which selectively affect the affinity to Rab6 and other cargoes.


Subject(s)
Dyneins , Protein Binding , rab GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Humans , Dyneins/metabolism , Dyneins/chemistry , Binding Sites , Kinesins/metabolism , Kinesins/chemistry , Kinesins/genetics , Mutation , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/chemistry , Protein Transport , Models, Molecular , Guanosine Triphosphate/metabolism
6.
Elife ; 112022 03 01.
Article in English | MEDLINE | ID: mdl-35229716

ABSTRACT

Nup358, a protein of the nuclear pore complex, facilitates a nuclear positioning pathway that is essential for many biological processes, including neuromuscular and brain development. Nup358 interacts with the dynein adaptor Bicaudal D2 (BicD2), which in turn recruits the dynein machinery to position the nucleus. However, the molecular mechanisms of the Nup358/BicD2 interaction and the activation of transport remain poorly understood. Here for the first time, we show that a minimal Nup358 domain activates dynein/dynactin/BicD2 for processive motility on microtubules. Using nuclear magnetic resonance titration and chemical exchange saturation transfer, mutagenesis, and circular dichroism spectroscopy, a Nup358 α-helix encompassing residues 2162-2184 was identified, which transitioned from a random coil to an α-helical conformation upon BicD2 binding and formed the core of the Nup358-BicD2 interface. Mutations in this region of Nup358 decreased the Nup358/BicD2 interaction, resulting in decreased dynein recruitment and impaired motility. BicD2 thus recognizes Nup358 through a 'cargo recognition α-helix,' a structural feature that may stabilize BicD2 in its activated state and promote processive dynein motility.


Subject(s)
Dyneins , Microtubule-Associated Proteins , Molecular Chaperones , Nuclear Pore Complex Proteins , Dynactin Complex/chemistry , Dynactin Complex/metabolism , Dyneins/chemistry , Dyneins/genetics , Dyneins/metabolism , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Microtubules/chemistry , Microtubules/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Protein Conformation, alpha-Helical
7.
J Phys Chem Lett ; 10(15): 4362-4367, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31306018

ABSTRACT

Dynein adaptors such as Bicaudal D2 (BicD2) recognize cargo for dynein-dependent transport, and cargo-bound adaptors are required to activate dynein for processive transport, but the mechanism of action is unknown. Here we report the X-ray structure of the cargo-binding domain of human BicD2 and investigate the structural dynamics of the coiled-coil. Our molecular dynamics simulations support the fact that BicD2 can switch from a homotypic coiled-coil registry, in which both helices of the homodimer are aligned, to an asymmetric registry, where a portion of one helix is vertically shifted, as both states are similarly stable and defined by distinct conformations of F743. The F743I variant increases dynein recruitment in the Drosophila homologue, whereas the human R747C variant causes spinal muscular atrophy. We report spontaneous registry shifts for both variants, which may be the cause for BicD2 hyperactivation and disease. We propose that a registry shift upon cargo binding may activate autoinhibited BicD2 for dynein recruitment.


Subject(s)
Dyneins/chemistry , Microtubule-Associated Proteins/chemistry , Animals , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Humans , Molecular Dynamics Simulation , Muscular Atrophy, Spinal/genetics , Mutation , Phenylalanine/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains
8.
J Vis Exp ; (135)2018 05 03.
Article in English | MEDLINE | ID: mdl-29782014

ABSTRACT

Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.


Subject(s)
CDC2 Protein Kinase/metabolism , Mass Spectrometry/methods , Phosphorylation/genetics , Humans
9.
Cell Cycle ; 16(15): 1414-1429, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28723232

ABSTRACT

Centromere protein F (CENP-F) is a component of the kinetochore and a regulator of cell cycle progression. CENP-F recruits the dynein transport machinery and orchestrates several cell cycle-specific transport events, including transport of the nucleus, mitochondria and chromosomes. A key regulatory step for several of these functions is likely the G2 phase-specific export of CENP-F from the nucleus to the cytosol, where the cytoplasmic dynein transport machinery resides; however, the molecular mechanism of this process is elusive. Here, we have identified 3 phosphorylation sites within the bipartite classical nuclear localization signal (cNLS) of CENP-F. These sites are specific for cyclin-dependent kinase 1 (Cdk1), which is active in G2 phase. Phosphomimetic mutations of these residues strongly diminish the interaction of the CENP-F cNLS with its nuclear transport receptor karyopherin α. These mutations also diminish nuclear localization of the CENP-F cNLS in cells. Notably, the cNLS is phosphorylated in the -1 position, which is important to orient the adjacent major motif for binding into its pocket on karyopherin α. We propose that localization of CENP-F is regulated by a cNLS, and a nuclear export pathway, resulting in nuclear localization during most of interphase. In G2 phase, the cNLS is weakened by phosphorylation through Cdk1, likely resulting in nuclear export of CENP-F via the still active nuclear export pathway. Once CENP-F resides in the cytosol, it can engage in pathways that are important for cell cycle progression, kinetochore assembly and the faithful segregation of chromosomes into daughter cells.


Subject(s)
Active Transport, Cell Nucleus/physiology , Chromosomal Proteins, Non-Histone/metabolism , G2 Phase/physiology , Kinetochores/metabolism , Microfilament Proteins/metabolism , Active Transport, Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone/genetics , G2 Phase/genetics , HeLa Cells , Humans , Microfilament Proteins/genetics , Mutation/genetics , Phosphorylation , alpha Karyopherins/genetics , alpha Karyopherins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL