Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Environ Sci Technol ; 55(19): 12902-12913, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34520188

ABSTRACT

The drainage of rice soils increases Cd solubility and results in high Cd concentrations in rice grains. However, plant Cd uptake is limited by sorption to iron plaques, and Cd redistribution in the plant is regulated by the nodes. To better understand the interplay of Cd uptake and redistribution in rice under drained and flooded conditions, we determined stable Cd isotope ratios and the expression of genes coding transporters that can transport Cd into the plant cells in a pot experiment. In soil, both water management practices showed similar patterns of isotope variation: the soil solution was enriched in heavy isotopes, and the root Fe plaque was enriched in light isotopes. In rice, the leaves were heavier (Δ114/110Cdleaf-shoot = 0.17 to 0.96‰) and the nodes were moderately lighter (Δ114/110Cdnode-shoot = -0.26 to 0.00‰) relative to the shoots under flooded conditions, indicating preferential retention of light isotopes in nodes and export of heavy isotopes toward leaves. This is generally reversed under drained conditions (Δ114/110Cdleaf-shoot = -0.25 to -0.04‰, Δ114/110Cdnode-shoot = 0.10 to 0.19‰). The drained treatment resulted in significantly higher expression of OsHMA2 and OsLCT1 (phloem loading) but lower expression of OsHMA3 (vacuolar sequestration) in nodes and flag leaves relative to the flooded treatment. It appeared that OsHMA2 and OsLCT1 might preferentially transport isotopically heavier Cd, and the excess Cd was purposefully retranslocated via the phloem under drained conditions when the vacuoles could not retain more Cd. Cd in seeds was isotopically heavier than that in stems under both water management practices, indicating that heavy isotopes were preferentially transferred toward seeds via the phloem, leaving light isotopes retained in stems. These findings demonstrate that the Fe plaque preferentially adsorbs and occludes light Cd isotopes on the root surface, and distinct water management practices alter the gene expression of key transporters in the nodes, which corresponds to a change in isotope fractionation between shoots and nodes/leaves.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Isotopes , Plant Leaves/chemistry , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Water , Water Supply
2.
Environ Sci Technol ; 52(1): 61-70, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29188998

ABSTRACT

Organic substrates and biochar are important in controlling arsenic release from sediments and soils; however, little is known about their impact on arsenic-reducing bacteria and genes during arsenic transformation in flooded paddy soils. In this study, microcosm experiments were established to profile transcriptional activity of As(V)-respiring gene (arrA) and arsenic resistance gene (arsC) as well as the associated bacteria regulated by lactate and/or biochar in anaerobic arsenic-contaminated paddy soils. Chemical analyses revealed that lactate as the organic substrate stimulated microbial reduction of As(V) and Fe(III), which was simultaneously promoted by lactate+biochar, due to biochar's electron shuttle function that facilitates electron transfer from bacteria to As(V)/Fe(III). Sequencing and phylogenetic analyses demonstrated that both arrA closely associated with Geobacter (>60%, number of identical sequences/number of the total sequences) and arsC related to Enterobacteriaceae (>99%) were selected by lactate and lactate+biochar. Compared with the lactate microcosms, transcriptions of the bacterial 16S rRNA gene, Geobacter spp., and Geobacter arrA and arsC genes were increased in the lactate+biochar microcosms, where transcript abundances of Geobacter and Geobacter arrA closely tracked with dissolved As(V) concentrations. Our findings indicated that lactate and biochar in flooded paddy soils can stimulate the active As(V)-respiring bacteria Geobacter species for arsenic reduction and release, which probably increases arsenic bioavailability to rice plants.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Bacteria , Charcoal , Ferric Compounds , Lactic Acid , Phylogeny , RNA, Ribosomal, 16S , Soil
3.
J Agric Food Chem ; 72(5): 2526-2535, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277640

ABSTRACT

To promote the growth and yield of crops, it is necessary to develop an effective silicon fertilizer. Herein, a new type of 2 nm silicon quantum dot (SiQD) was developed, and the phenotypic, biochemical, and metabolic responses of rice seedlings treated with SiQDs were investigated. The results indicated that the foliar application of SiQDs could significantly improve the growth of rice seedlings by increasing the uptake of nutrient elements and activating the antioxidative defense system. Furthermore, metabolomics revealed that the supply of SiQDs could significantly up-regulate several antioxidative metabolites (oxalic acid, maleic acid, glycine, lysine, and proline) by reprogramming the nitrogen- and carbon-related biological pathways. The findings provide a new strategy for developing an effective and promising quantum fertilizer in agriculture.


Subject(s)
Oryza , Quantum Dots , Antioxidants/metabolism , Silicon/pharmacology , Seedlings/metabolism , Fertilizers , Nitrogen/metabolism
4.
ACS Nano ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39378139

ABSTRACT

Long afterglow materials based on carbon dots (CDs) have attracted extensive attention in the field of optics due to their low cost and nontoxic properties. However, the targeted synthesis of specific properties of complex and unknown structures such as CDs remains a daunting challenge. In this study, the powerful nonlinear fitting ability of machine learning was used to explore the afterglow properties of CDs. The XGBoost algorithm demonstrates high prediction accuracy in determining the optimal excitation wavelength, optimal emission wavelength, and afterglow lifetime. Using Bayesian optimization, we screened and synthesized the CDs-based long afterglow materials with the longest lifetime reported so far by a one-step microwave method. By combining quantum chemical calculations with experimental data, we revealed the structure-function relationship between CDs and their precursors through electron-hole analysis. These results show that machine learning can establish nonlinear correlations between precursors and materials with unknown structures, clarify their intrinsic relationships, simplify the material design process, and thus accelerate the development of advanced materials.

5.
J Agric Food Chem ; 71(6): 2773-2783, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36703540

ABSTRACT

Bacterial fruit blotch is one of the most destructing diseases of melon producing-regions. Here, zinc oxide quantum dots (ZnO QDs) were synthesized, and their antibacterial activity against Acidovorax citrulli was investigated. The results indicated that the obtained ZnO QDs displayed 5.7-fold higher antibacterial activity than a commercial Zn-based bactericide (zinc thiazole). Interestingly, the antibacterial activity of ZnO QDs irradiated with light was 1.8 times higher than that of the dark-treated group. It was because ZnO QDs could induce the generation of hydroxyl radicals and then up-regulate the expression of oxidative stress-related genes, finally leading to the loss of cell membrane integrity. A pot experiment demonstrated that foliar application of ZnO QDs significantly reduced the bacterial fruit blotch disease incidence (32.0%). Furthermore, the supply of ZnO QDs could improve the growth of infected melon seedlings by activating the antioxidant defense system. This work provides a promising light-activated quantum-bactericide for the management of pathogenic bacterial infections in melon crop protection.


Subject(s)
Bacterial Infections , Cucurbitaceae , Quantum Dots , Zinc Oxide , Zinc Oxide/pharmacology , Seedlings , Fruit/microbiology , Anti-Bacterial Agents/pharmacology
6.
Sci Total Environ ; 879: 163089, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37001268

ABSTRACT

Zero-valent iron nanoparticles (nZVI) were widely used material in environmental remediation, which has attracted increasing concern for their safety. Previous studies have shown that the addition of nZVI could inhibit rice seedling growth. However, the effect of nZVI on the soil-rice system during the entire life cycle was not reported. Furthermore, the effect of nZVI on the quality of rice grain has also not been studied. Therefore, we investigated the effects of rice grain yield and nutritional quality upon exposure nZVI. The results showed that the soil pH value, redox potential and Fe (II) content in the nZVI-treated group were decreased in a dose-dependent manner. Interestingly, 2500 mg/kg nZVI significantly decreased the relative abundance of several functional microbial communities (10.52-73.53 %) associated with carbon and nitrogen cycles in response to plants compared to the control. Meanwhile, the nZVI treatment clearly reduced grain yield (8.71-18.21 %). Furthermore, the content of protein (51.72-57.79 %) and several essential nutrients (Zn, Cu, Mn and Mo) in the nZVI-treated grains was also decreased in a dose-dependent manner. The results of grain metabolomics indicated that nZVI could interfere with the relative expression of lysine and glutathione by regulating the metabolic pathways of antioxidant and protein synthesis in rice.


Subject(s)
Environmental Restoration and Remediation , Metal Nanoparticles , Oryza , Soil Pollutants , Iron/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Soil/chemistry , Nutritive Value , Soil Pollutants/analysis
7.
Sci Total Environ ; 770: 145340, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33736383

ABSTRACT

MAX phase materials are a new type of nanomaterial with wide applications, but the potential effects of MAX phase materials on plants have not been reported. Herein, we selected Ti3AlC2 nanosheets as a typical MAX phase material to investigate its potential impacts on rice (Oryza sativa L.) at 0-1000 µg·mL-1. The foliar application of Ti3AlC2 at 100 and 1000 µg·mL-1 inhibited the growth of rice seedlings by producing excess reactive oxygen species (ROS). Furthermore, foliar spraying of Ti3AlC2 at 100 µg·mL-1 decreased the stomatal aperture (78.6%) and increased the number of trichomes (100%). These responses demonstrated that the application of Ti3AlC2 could interfere with the immune system of plants by changing the structure and function of leaves, disturbing the activities of antioxidant enzymes. According to the above results, we concluded that the toxicity of Ti3AlC2 nanosheets on plants was mainly caused by the release of titanium ions. This study provides a valuable reference for understanding the impact of MAX phase materials on plants.


Subject(s)
Oryza , Antioxidants , Oxidative Stress , Seedlings , Titanium/toxicity
8.
J Hazard Mater ; 404(Pt B): 124014, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33069998

ABSTRACT

Molybdenum disulfide nanoparticles (MoS2 NPs) has emerged as the promising nanomaterial with a wide array of applications in the biomedical, industrial and environmental field. However, the potential effect of MoS2 NPs on marine organisms has yet to be reported. In this study, the effect of MoS2 NPs on the physiological index, subcellular morphology, transcriptomic profiles of the marine microalgae Dunaliella salina was investigated for the first time. exhibited "doping-like" effects on marine microalgae; Growth stimulation was 193.55%, and chlorophyll content increased 1.61-fold upon the addition of 50 µg/L MoS2 NPs. Additionally, exposure to MoS2 NPs significantly increased the protein and carbohydrate content by 2.03- and 1.56-fold, respectively. The antioxidant system was activated as well to eliminate the adverse influence of reactive oxygen species (ROS). Transcriptomic analysis revealed that genes involved in porphyrin synthesis, glycolysis/gluconeogenesis, tricarboxylic acid cycle and DNA replication were upregulated upon MoS2 NPs exposure, which supports the mechanistic role of MoS2 NPs in improving cellular growth and photosynthesis. The "doping-like" effects on marine algae suggest that the low concentration of MoS2 NPs might change the rudimentary ecological composition in the ocean.


Subject(s)
Microalgae , Nanoparticles , Disulfides/toxicity , Microalgae/genetics , Molybdenum/toxicity , Nanoparticles/toxicity
9.
Bioresour Technol ; 320(Pt B): 124391, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33220546

ABSTRACT

Molybdenum disulfide nanoparticles (MoS2 NPs) hold tremendous properties in wide domain of applications. In this study, the impact of MoS2 NPs was investigated on algal physiological and metabolic properties and a two-stage strategy was acquired to enhance the commercial potential of Dunaliella salina. With 50 µg/L of MoS2 NPs exposure, cellular growth and biomass production were promoted by 1.47- and 1.33-fold than that in control, respectively. MoS2 NPs treated cells were subject to high light intensity for 7 days after 30 days of normal light cultivation, which showed that high light intensity gradually increased ß-carotene content by 1.48-fold. Furthermore, analyses of primary metabolites showed that combinatorial approach significantly altered the biochemical composition of D. salina. Together, these findings demonstrated that MoS2 NPs at an optimum concentration combined with high light intensity could be a promising approach to concurrently enhance biomass and ß-carotene production in microalgae.


Subject(s)
Nanoparticles , beta Carotene , Biomass , Disulfides , Molybdenum
10.
J Hazard Mater ; 395: 122623, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32353819

ABSTRACT

Irrigation water is commonly contaminated with cadmium and arsenic near mining regions, which significantly contributes to excessive heavy metals in rice grains. Herein, we have developed a novel graphene-like biochar (GB)-supported nanoscale zero-valent iron (nZVI) and the underlying mechanisms of synergistic effects between GB and nZVI for the simultaneous removal of Cd(II) and As(III) under aerobic conditions. The results show that GB/nZVI has a high removal capacity of 363 mg/g (nZVI) for As(III) at pH 4 and 92.8 mg/g (nZVI) for Cd(II) at pH 7. These values are significantly higher than GB and nZVI (1.7 times for Cd(II); 1.4 times for As(III)) alone, suggesting strong synergistic effects between GB and nZVI. GB promotes nZVI oxidation to form iron oxyhydroxides and causing 35 % of As(III) converting to As(V). Importantly, As(III) significantly enhance Cd(II) removal by GB/nZVI (i.e., 131.8 mg/g as nZVI). Coexisting ions such as phosphate and humic acid have a stronger inhibitory effect on the simultaneous removal of Cd(II) and As(III). Our results indicate that oxidation and surface complexation are the dominant mechanisms and electrostatic binding exists for As(III) removal, while surface complexation predominates for Cd(II) removal. These findings provide insight into developing an effective solution for removing Cd(II)/As(III) from irrigation waters.


Subject(s)
Graphite , Water Pollutants, Chemical , Adsorption , Cadmium , Charcoal , Iron/analysis , Water , Water Pollutants, Chemical/analysis
11.
J Hazard Mater ; 394: 122551, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32272326

ABSTRACT

Molybdenum disulfide sheets loaded with copper nanoparticles (MoS2-CuNPs) was prepared and its antibacterial activity against phytopathogen Xanthomonas oryzae pv. oryzae (Xoo) was investigated in vitro and in vivo for the first time. In a 2 h co-incubation, MoS2-CuNPs exhibited 19.2 times higher antibacterial activity against Xoo cells than a commercial copper bactericide (Kocide 3000). In the detached leaf experiment, the disease severity decreased from 86.25 % to 7.5 % in the MoS2-CuNPs treated rice leaves. The results further demonstrated that foliar application of MoS2-CuNPs could form a protective film and increase the density of trichome on the surface of rice leaves, finally prevent the infection of Xoo cells. This was probably due to the synergistic effect of MoS2-CuNPs. Additionally, foliar application of MoS2-CuNPs (4-32 µg/mL) increased obviously the content of Mo and chlorophyll (up 30.85 %), and then improved the growth of rice seedlings. Furthermore, the obtained MoS2-CuNPs could activate the activities of the antioxidant enzymes in rice, indicating higher resistance of rice under abiotic/biotic stresses. The multifunctional MoS2-CuNPs with superior antibacterial activity provided a promising alternative to the traditional antibacterial agents and had great potential in plant protection.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Metal Nanoparticles/therapeutic use , Nanocomposites/therapeutic use , Oryza/drug effects , Plant Diseases/prevention & control , Anti-Bacterial Agents/chemistry , Chlorophyll/metabolism , Copper/chemistry , Copper/therapeutic use , Disulfides/chemistry , Disulfides/therapeutic use , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Molybdenum/chemistry , Molybdenum/therapeutic use , Nanocomposites/chemistry , Oryza/growth & development , Oxidative Stress/drug effects , Plant Leaves/drug effects , Seedlings/drug effects , Xanthomonas/drug effects
12.
J Agric Food Chem ; 66(16): 4013-4021, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29630363

ABSTRACT

Molybdenum sulfide (MoS2) has been applied widely in industrial and environmental application, leading to increasing release into environment. So far, no studies have been investigated with regard to the potential effect of MoS2 on plants. Herein, we studied the impact of MoS2 on the growth, chlorophyll content, lipid peroxidation, antioxidase system, and aquaporins of rice for the first time. Results showed that MoS2 did not significantly affect the germination of rice seeds, malonaldehyde (MDA) content, and the antioxidant enzyme activity. While the length and biomass of rice root and shoot, chlorophyll content index (CCI), and expression of aquaporin genes were significantly increased. Based on these results, we concluded that MoS2 promoted rice growth through (i) the promotion of nitrogen source assimilation, (ii) the enhancement of photosynthesis, enzymatic-related biochemical reactions, and metabolic processes, subsequently, (iii) the acceleration of cell division and expansion, furthermore (iv) no abiotic stress and favorable condition of antioxidant enzyme system. These results provided an important insight into the further application of MoS2 on agriculture and environment.


Subject(s)
Aquaporins/genetics , Chlorophyll/biosynthesis , Disulfides/pharmacology , Molybdenum/pharmacology , Oryza/drug effects , Oryza/growth & development , Plant Proteins/genetics , Aquaporins/metabolism , Gene Expression Regulation, Plant/drug effects , Oryza/genetics , Oryza/metabolism , Photosynthesis , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism
13.
Sci Total Environ ; 644: 602-610, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-29990910

ABSTRACT

Although previous studies have indicated that selenium (Se) can reduce cadmium (Cd) uptake into rice, the mechanism at the cellular level has not been reported. Here, rice suspension cells exposed to Cd treatment in the presence or absence of Se were characterized. Compared with treatment with alone, pretreatment with Se increased the proportion of live cells by 83.1%. The levels of reactive oxygen species and mitochondrial membrane potential in the Se-pretreated rice cells were decreased by 86.6% and 76.0%, respectively. In addition, non-invasive micro-test technology suggested that the mean values of Cd2+ influx decreased significantly in the Se-pretreated rice cells in a concentration-dependent manner. The results of inductively coupled plasma-mass spectrometry (ICP-MS) showed that 67.4%-78.8% Cd accumulated onto the cell walls of the pretreated-Se rice cells. The addition of Se increased the lignin content and thickness of the cell walls, leading to an improved mechanical force of the cell walls, as determined by atomic force microscopy (AFM). Furthermore, Se pretreatment decreased the expression of genes involved in Cd uptake (OsNramp5) and transport (OsLCT1) but activated the expression of genes involved in Cd transport into vacuoles (OsHMA3) and lignin synthesis (OsPAL, OsCoMT and Os4CL3). These results indicated that supplying Se alleviates Cd toxicity by regulating the express of lignin synthesis and Cd-related genes. The present findings provide new insights on a plausible explanation of the Se-reduced Cd uptake into rice.


Subject(s)
Cadmium/toxicity , Oryza/physiology , Selenium/metabolism , Soil Pollutants/toxicity , Biological Transport , Lignin
14.
RSC Adv ; 8(3): 1255-1264, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35540870

ABSTRACT

Despite much progress in modifying chitosan as an absorbent for wastewater treatment, it is still difficult for current chitosan-based adsorbents to achieve the desired removal effects towards basic dyes. In this study, chitosan-derived three-dimensional porous carbon (CTC) consisting of large-diameter channels and mesopores was prepared to remove methylene blue (MB) from wastewater. The results indicate that CTC has excellent performance for MB removal, and the maximum adsorption capacity was 925.93 mg g-1 at 318 K. The adsorption isotherm and kinetics models of MB on CTC could be described well by the Langmuir isotherms and the pseudo-second-order rate model. An experiment to study the CTC removal of MB from a flowing aqueous solution was performed using a homemade device. The water treatment rate of CTC reached 250 L g-1 h-1, with high MB removal efficiency (>93.4%). Furthermore, the desorption-adsorption experiments indicate that CTC is also a reusable adsorbent that can be applied to recover MB from wastewater. The obtained CTC is a promising alternative for the current expensive absorbents and provides a concept for designing the three-dimensional (3D) structures of raw materials to improve adsorption capability.

15.
Chemosphere ; 195: 260-271, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29272795

ABSTRACT

The fates of cadmium (Cd) and arsenic (As) in paddy fields are generally opposite; thus, the inconsistent transformation of Cd and As poses large challenges for their remediation. In this study, the impacts of zero valent iron (ZVI) and/or biochar amendments on Cd and As bioavailability were examined in pot trials with rice. Comparison with the untreated soil, both Cd and As accumulation in different rice tissues decreased significantly in the ZVI-biochar amendments and the Cd and As accumulation in rice decreased with increasing ZVI contents. In particular, the concentrations of Cd (0.15 ± 0.01 mg kg-1) and As (0.17 ± 0.01 mg kg-1) in rice grains were decreased by 93% and 61% relative to the untreated soil, respectively. A sequential extraction analysis indicated that with increasing Fe ratios in the ZVI-biochar mixtures, bioavailable Cd and As decreased, and the immobilized Cd and As increased. Furthermore, high levels of Fe, Cd, and As were detected in Fe plaque of the ZVI-biochar amendments in comparison with the single biochar or single ZVI amendments. The ZVI-biochar mixture may have a synergistic effect that simultaneously reduces Cd and As bioavailability by increasing the formation of amorphous Fe and Fe plaque for Cd and As immobilization. The single ZVI amendment significantly decreased As bioavailability, while the single biochar amendment significantly reduced the bioavailability of Cd compared with the combined amendments. Hence, using a ZVI-biochar mixture as a soil amendment could be a promising strategy for safely-utilizing Cd and As co-contaminated sites in the future.


Subject(s)
Arsenic/analysis , Cadmium/analysis , Charcoal/pharmacology , Oryza/metabolism , Arsenic/metabolism , Biological Availability , Cadmium/metabolism , Environmental Pollution/analysis , Iron/analysis , Soil , Soil Pollutants/analysis
16.
Environ Pollut ; 228: 363-369, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28551566

ABSTRACT

Although it was recently determined that silicon can alleviate cadmium (Cd) toxicity in rice, the effects of silicon properties and the molecular mechanisms are still unclear. Here, the effect of silica nanoparticles (SiNPs) on Cd toxicity in rice was examined using cells cultured in suspension in the presence or absence of SiNPs (19 nm, 48 nm and 202 nm). The results showed that the presence of SiNPs substantially enhanced the proportion of live cells to 95.4%, 78.6% and 66.2%, respectively, suggesting that the extent of alleviation of Cd toxicity decreased gradually with size of SiNPs. The morphological results showed that dramatic damage and severe structural changes in the organelle integrity of cells occurred in the absence of SiNPs, whereas the cells exposed to the SiNPs remained nearly intact even in the presence of high concentrations of Cd. Furthermore, the SiNPs accumulated on the surface of the rice cells. Using inductively coupled plasma mass spectroscopy, Cd accumulated preferentially in plant cells with cell walls. In addition, noninvasive microtest technology showed that the average Cd2+ influx in those treated with SiNPs (19 nm, 48 nm and 202 nm) decreased by 15.7-, 11.1- and 4.6-fold, respectively. The gene expression of Cd uptake and transport (OsLCT1 and OsNramp5) was inhibited by SiNPs, but the gene expression of Cd transport into vacuole (OsHMA3) and Si uptake (OsLsi1) was enhanced by the SiNPs. These results indicate that the presence of SiNPs increased at least 1.87-fold the Si uptake capacity and inhibited the Cd uptake capacity, which together resulted in the alleviation of the toxicity of Cd in rice. This study provided a molecular-scale insight into the understanding of the SiNPs-induced alleviation of the toxicity of Cd in rice.


Subject(s)
Cadmium/toxicity , Nanoparticles/metabolism , Oryza/physiology , Soil Pollutants/toxicity , Cadmium/metabolism , Cell Wall/metabolism , Nanoparticles/chemistry , Oryza/cytology , Oryza/drug effects , Silicon/chemistry , Silicon/metabolism , Silicon Dioxide/chemistry , Soil Pollutants/metabolism
17.
Sci Rep ; 6: 21423, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26888152

ABSTRACT

Bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice, leading to reduction in production by 10-50%. In order to control this disease, various chemical bactericides have been used. Wide and prolonged application of chemical bactericides resulted in the resistant strain of Xoo that was isolated from rice. To address this problem, we were searching for an environmentally friendly alternative to the commonly used chemical bactericides. In this work, we demonstrate that silicon dioxide nanospheres loaded with silver nanoparticles (SiO2-Ag) can be prepared by using rice husk as base material precursor. The results of the antibacterial tests showed that SiO2-Ag composites displayed antibacterial activity against Xoo. At cellular level, the cell wall/membrane was damaged and intercellular contents were leaked out by slow-releasing of silver ions from SiO2-Ag composites. At molecular level, this composite induced reactive oxygen species production and inhibited DNA replication. Based on the results above, we proposed the potential antibacterial mechanism of SiO2-Ag composites. Moreover, the cytotoxicity assay indicated that the composites showed mild toxicity with rice cells. Thus, this work provided a new strategy to develop biocide derived from residual biomass.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles/chemistry , Nanospheres/chemistry , Oryza/microbiology , Plant Diseases/microbiology , Silicon Dioxide , Silver , Xanthomonas/growth & development , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Silver/chemistry , Silver/pharmacology
18.
Materials (Basel) ; 9(3)2016 Mar 09.
Article in English | MEDLINE | ID: mdl-28773309

ABSTRACT

A rapid approach has been developed for the fluorescent carbon dots (CDs) by the hydrothermal treatment of lignin in the presence of H2O2. The as-synthesized CDs were found to emit blue photoluminescence with excellent photostability. Moreover, the CDs displayed biocompatibility, low cytotoxicity, and high water solubility properties. Finally, the as-resulted CDs were demonstrated to be excellent probes for bioimaging and biosensing applications.

19.
J Colloid Interface Sci ; 455: 117-24, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26057944

ABSTRACT

In this paper, we chose rice husk as raw material and synthesized successfully porous carbon loaded with silver nanoparticles (RH-Ag) composites by simple and cost-effective method. The as-prepared RH-Ag composites have a BET-specific surface area of 1996 m(2) g(-1) and result in strong capacity of bacteria adsorption. The result of antibacterial study indicated that the RH-Ag system displayed antibacterial activity that was two times better than pure Ag NPs. Our study demonstrates that the antibacterial activity of RH-Ag composites may be attributed to their strong adsorption ability with bacteria and result in the disorganization of the bacterial membrane ultrastructure. In addition, RH-Ag system was found to be durative slow-releasing of silver ions and biocompatible for human skin keratinocytes cells. In terms of these advantages, the RH-Ag composites have potential application in antibacterial infections and therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbon/chemistry , Escherichia coli/drug effects , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Oryza/chemistry , Adsorption , Anti-Bacterial Agents/chemical synthesis , Cell Line , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Cell Survival/drug effects , Escherichia coli/growth & development , Escherichia coli/ultrastructure , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Nanocomposites/ultrastructure , Porosity , Silver/chemistry , Silver/pharmacology , Waste Products
20.
J Mater Chem B ; 1(1): 39-42, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-32260610

ABSTRACT

Highly blue-luminescent nitrogen-doped graphene quantum dots (N-GQDs) are obtained by hydrothermal treatment of graphene oxide in the presence of ammonia. The yield of N-GQDs is about 8.7% in weight. A high quantum yield of maximum 24.6% at an excitation wavelength of 340 nm is achieved. They are applied for bioimaging of HeLa cells, and showed bright luminescence and excellent biocompatibility.

SELECTION OF CITATIONS
SEARCH DETAIL