Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
PLoS Genet ; 16(5): e1008757, 2020 05.
Article in English | MEDLINE | ID: mdl-32379754

ABSTRACT

In the last decades in vitro studies highlighted the potential for crosstalk between Hypoxia-Inducible Factor-(HIF) and glucocorticoid-(GC) signalling pathways. However, how this interplay precisely occurs in vivo is still debated. Here, we use zebrafish larvae (Danio rerio) to elucidate how and to what degree hypoxic signalling affects the endogenous glucocorticoid pathway and vice versa, in vivo. Firstly, our results demonstrate that in the presence of upregulated HIF signalling, both glucocorticoid receptor (Gr) responsiveness and endogenous cortisol levels are repressed in 5 days post fertilisation larvae. In addition, despite HIF activity being low at normoxia, our data show that it already impedes both glucocorticoid activity and levels. Secondly, we further analysed the in vivo contribution of glucocorticoids to HIF activity. Interestingly, our results show that both glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) play a key role in enhancing it. Finally, we found indications that glucocorticoids promote HIF signalling via multiple routes. Cumulatively, our findings allowed us to suggest a model for how this crosstalk occurs in vivo.


Subject(s)
Glucocorticoids/pharmacology , Hypoxia-Inducible Factor 1/physiology , Receptor Cross-Talk/physiology , Zebrafish , Animals , Animals, Genetically Modified , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Embryo, Nonmammalian , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Glucocorticoids/metabolism , Hypoxia-Inducible Factor 1/metabolism , Larva/genetics , Larva/metabolism , Receptor Cross-Talk/drug effects , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Suppressor Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics
2.
Epilepsia ; 61(10): 2106-2118, 2020 10.
Article in English | MEDLINE | ID: mdl-32797628

ABSTRACT

OBJECTIVE: Current medicines are ineffective in approximately one-third of people with epilepsy. Therefore, new antiseizure drugs are urgently needed to address this problem of pharmacoresistance. However, traditional rodent seizure and epilepsy models are poorly suited to high-throughput compound screening. Furthermore, testing in a single species increases the chance that therapeutic compounds act on molecular targets that may not be conserved in humans. To address these issues, we developed a pipeline approach using four different organisms. METHODS: We sequentially employed compound library screening in the zebrafish, Danio rerio, chemical genetics in the worm, Caenorhabditis elegans, electrophysiological analysis in mouse and human brain slices, and preclinical validation in mouse seizure models to identify novel antiseizure drugs and their molecular mechanism of action. RESULTS: Initially, a library of 1690 compounds was screened in an acute pentylenetetrazol seizure model using D rerio. From this screen, the compound chlorothymol was identified as an effective anticonvulsant not only in fish, but also in worms. A subsequent genetic screen in C elegans revealed the molecular target of chlorothymol to be LGC-37, a worm γ-aminobutyric acid type A (GABAA ) receptor subunit. This GABAergic effect was confirmed using in vitro brain slice preparations from both mice and humans, as chlorothymol was shown to enhance tonic and phasic inhibition and this action was reversed by the GABAA receptor antagonist, bicuculline. Finally, chlorothymol exhibited in vivo anticonvulsant efficacy in several mouse seizure assays, including the 6-Hz 44-mA model of pharmacoresistant seizures. SIGNIFICANCE: These findings establish a multiorganism approach that can identify compounds with evolutionarily conserved molecular targets and translational potential, and so may be useful in drug discovery for epilepsy and possibly other conditions.


Subject(s)
Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Drug Discovery/methods , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/therapeutic use , Receptors, GABA-A/metabolism , Seizures/drug therapy , Animals , Anticonvulsants/pharmacology , Caenorhabditis elegans , Dose-Response Relationship, Drug , Drug Discovery/trends , Female , GABA-A Receptor Agonists/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Seizures/genetics , Seizures/metabolism , Species Specificity , Thymol/chemistry , Thymol/pharmacology , Thymol/therapeutic use , Zebrafish
3.
Hum Mol Genet ; 26(11): 1992-2005, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28334933

ABSTRACT

Psychiatric disorders arise due to an interplay of genetic and environmental factors, including stress. Studies in rodents have shown that mutants for Disrupted-In-Schizophrenia-1 (DISC1), a well-accepted genetic risk factor for mental illness, display abnormal behaviours in response to stress, but the mechanisms through which DISC1 affects stress responses remain poorly understood. Using two lines of zebrafish homozygous mutant for disc1, we investigated behaviour and functioning of the hypothalamic-pituitary-interrenal (HPI) axis, the fish equivalent of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we show that the role of DISC1 in stress responses is evolutionarily conserved and that DISC1 is essential for normal functioning of the HPI axis. Adult zebrafish homozygous mutant for disc1 show aberrant behavioural responses to stress. Our studies reveal that in the embryo, disc1 is expressed in neural progenitor cells of the hypothalamus, a conserved region of the vertebrate brain that centrally controls responses to environmental stressors. In disc1 mutant embryos, proliferating rx3+ hypothalamic progenitors are not maintained normally and neuronal differentiation is compromised: rx3-derived ff1b+ neurons, implicated in anxiety-related behaviours, and corticotrophin releasing hormone (crh) neurons, key regulators of the stress axis, develop abnormally, and rx3-derived pomc+ neurons are disorganised. Abnormal hypothalamic development is associated with dysfunctional behavioural and neuroendocrine stress responses. In contrast to wild type siblings, disc1 mutant larvae show altered crh levels, fail to upregulate cortisol levels when under stress and do not modulate shoal cohesion, indicative of abnormal social behaviour. These data indicate that disc1 is essential for normal development of the hypothalamus and for the correct functioning of the HPA/HPI axis.


Subject(s)
Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/physiology , Zebrafish Proteins/metabolism , Zebrafish Proteins/physiology , Animals , Codon, Nonsense , Corticotropin-Releasing Hormone/metabolism , Hydrocortisone , Hypothalamo-Hypophyseal System/metabolism , Hypothalamus/embryology , Hypothalamus/metabolism , Larva/metabolism , Nerve Tissue Proteins/genetics , Pituitary Gland , Pituitary-Adrenal System/metabolism , Stress, Psychological , Zebrafish/metabolism , Zebrafish Proteins/genetics
4.
Prostate ; 79(10): 1079-1089, 2019 07.
Article in English | MEDLINE | ID: mdl-31104332

ABSTRACT

BACKGROUND: Enhancer of zeste 2 (EZH2) promotes prostate cancer progression. We hypothesized that increased EZH2 expression is associated with postradiotherapy metastatic disease recurrence, and may promote radioresistance. METHODS: EZH2 expression was investigated using immunohistochemistry in diagnostic prostate biopsies of 113 prostate cancer patients treated with radiotherapy with curative intent. Associations between EZH2 expression in malignant and benign tissue in prostate biopsy cores and outcomes were investigated using univariate and multivariate Cox regression analyses. LNCaP and PC3 cell radiosensitivity was investigated using colony formation and γH2AX assays following UNC1999 chemical probe-mediated EZH2 inhibition. RESULTS: While there was no significant association between EZH2 expression and biochemical recurrence following radiotherapy, univariate analysis revealed that prostate cancer cytoplasmic and total EZH2 expression were significantly associated with metastasis development postradiotherapy (P = 0.034 and P = 0.003, respectively). On multivariate analysis, the prostate cancer total EZH2 expression score remained statistically significant (P = 0.003), while cytoplasmic EZH2 expression did not reach statistical significance (P = 0.053). No association was observed between normal adjacent prostate EZH2 expression and biochemical recurrence or metastasis. LNCaP and PC3 cell treatment with UNC1999 reduced histone H3 lysine 27 tri-methylation levels. Irradiation of LNCaP or PC3 cells with a single 2 Gy fraction with UNC1999-mediated EZH2 inhibition resulted in a statistically significant, though modest, reduction in cell colony number for both cell lines. Increased γH2AX foci were observed 24 hours after ionizing irradiation in LNCaP cells, but not in PC3, following UNC1999-mediated EZH2 inhibition vs controls. CONCLUSIONS: Taken together, these results reveal that high pretreatment EZH2 expression in prostate cancer in diagnostic biopsies is associated with an increased risk of postradiotherapy metastatic disease recurrence, but EZH2 function may only at most play a modest role in promoting prostate cancer cell radioresistance.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Cell Line, Tumor , Disease Progression , Humans , Male , Neoplasm Grading , Prostate/pathology , Prostatic Neoplasms/radiotherapy , Soft Tissue Neoplasms/metabolism , Soft Tissue Neoplasms/secondary
5.
FASEB J ; 31(6): 2241-2251, 2017 06.
Article in English | MEDLINE | ID: mdl-28280003

ABSTRACT

Exposure to environmental stressors, toxicants, and nutrient deficiencies can affect DNA in several ways. Some exposures cause damage and alter the structure of DNA, but there is increasing evidence that the same or other environmental exposures, including those that occur during fetal development in utero, can cause epigenetic effects that modulate DNA function and gene expression. Some epigenetic changes to DNA that affect gene transcription are at least partially reversible (i.e., they can be enzymatically reversed after cessation of exposure to environmental agents), but some epigenetic modifications seem to persist, even for decades. To explain the effects of early life experiences (such as famine and exposures to other stressors) on the long-term persistence of specific patterns of epigenetic modifications, such as DNA methylation, we propose an analogy with immune memory. We propose that an epigenetic memory can be established and maintained in self-renewing stem cell compartments. We suggest that the observations on early life effects on adult diseases and the persistence of methylation changes in smokers support our hypothesis, for which a mechanistic basis, however, needs to be further clarified. We outline a new model based on methylation changes. Although these changes seem to be mainly adaptive, they are also implicated in the pathogenesis and onset of diseases, depending on individual genotypic background and types of subsequent exposures. Elucidating the relationships between the adaptive and maladaptive consequences of the epigenetic modifications that result from complex environmental exposures is a major challenge for current and future research in epigenetics.-Vineis, P., Chatziioannou, A., Cunliffe, V. T., Flanagan, J. M., Hanson, M., Kirsch-Volders, M., Kyrtopoulos, S. Epigenetic memory in response to environmental stressors.


Subject(s)
Environment , Environmental Pollutants/toxicity , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/physiology , Animals , DNA Methylation/drug effects , DNA Methylation/physiology , Environmental Exposure , Humans
6.
Dis Model Mech ; 16(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37525888

ABSTRACT

Glucocorticoid resistance is commonly observed in depression, and has been linked to reduced expression and/or function of the glucocorticoid receptor (NR3C1 in human, hereafter referred to as GR). Previous studies have shown that GR-mutant zebrafish exhibit behavioural abnormalities that are indicative of an affective disorder, suggesting that GR plays a role in brain function. We compared the brain methylomes and brain transcriptomes of adult wild-type and GR-mutant zebrafish, and identified 249 differentially methylated regions (DMRs) that are regulated by GR. These include a cluster of CpG sites within the first intron of fkbp5, the gene encoding the glucocorticoid-inducible heat shock protein co-chaperone Fkbp5. RNA-sequencing analysis revealed that genes associated with chaperone-mediated protein folding, the regulation of circadian rhythm and the regulation of metabolism are particularly sensitive to loss of GR function. In addition, we identified subsets of genes exhibiting GR-regulated transcription that are known to regulate behaviour, and are linked to unipolar depression and anxiety. Taken together, our results identify key biological processes and novel molecular mechanisms through which the GR is likely to mediate responses to stress in the adult zebrafish brain, and they provide further support for the zebrafish GR mutant as a model for the study of affective disorders.


Subject(s)
Circadian Clocks , Receptors, Glucocorticoid , Animals , Adult , Humans , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Circadian Clocks/genetics , Zebrafish/genetics , Zebrafish/metabolism , Brain/metabolism , Mood Disorders/metabolism
7.
Dis Model Mech ; 16(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37293698

ABSTRACT

Little is known about the distal excretory component of the urinary tract in Danio rerio (zebrafish). This component is affected by many human diseases and disorders of development. Here, we have undertaken multi-level analyses to determine the structure and composition of the distal urinary tract in the zebrafish. In silico searches identified uroplakin 1a (ukp1a), uroplakin 2 (upk2) and uroplakin 3b (upk3b) genes in the zebrafish genome (orthologues to genes that encode urothelium-specific proteins in humans). In situ hybridization demonstrated ukp1a expression in the zebrafish pronephros and cloaca from 96 h post-fertilization. Haematoxylin and Eosin staining of adult zebrafish demonstrated two mesonephric ducts uniting into a urinary bladder that leads to a distinct urethral opening. Immunohistochemistry identified Uroplakin 1a, Uroplakin 2 and GATA3 expression in zebrafish urinary bladder cell layers that match human urothelial expression. Fluorescent dye injections demonstrated zebrafish urinary bladder function, including urine storage and intermittent micturition, and a urethral orifice separate from the larger anal canal and rectum. Our findings reveal homology between the urinary tracts of zebrafish and humans, and offer the former as a model system to study disease.


Subject(s)
Membrane Glycoproteins , Zebrafish , Animals , Humans , Adult , Zebrafish/metabolism , Membrane Glycoproteins/metabolism , Uroplakin Ia/metabolism , Uroplakin II/metabolism , Urinary Bladder/metabolism
8.
BMC Genomics ; 12: 24, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21226904

ABSTRACT

BACKGROUND: The epigenetic regulator Histone Deacetylase 1 (Hdac1) is required for specification and patterning of neurones and myelinating glia during development of the vertebrate central nervous system (CNS). This co-ordinating function for Hdac1 is evolutionarily conserved in zebrafish and mouse, but the mechanism of action of Hdac1 in the developing CNS is not well-understood. RESULTS: A genome-wide comparative analysis of the transcriptomes of Hdac1-deficient and wild-type zebrafish embryos was performed, which identified an extensive programme of gene expression that is regulated by Hdac1 in the developing embryo. Using time-resolved expression profiling of embryos, we then identified a small subset of 54 genes within the Hdac1-regulated transcriptome that specifically exhibit robust and sustained Hdac1-dependent expression from early neurogenesis onwards. 18 of these 54 stringently Hdac1-regulated genes encode DNA-binding transcription factors that are implicated in promoting neuronal specification and CNS patterning, including the proneural bHLH proteins Ascl1a and Ascl1b, as well as Neurod4 and Neurod. Relatively few genes are strongly repressed by Hdac1 but expression of the Notch target gene her6 is attenuated by Hdac1 in specific sub-regions of the developing CNS, from early stages of neurogenesis onwards. Selected members of the stringently Hdac1-regulated group of genes were tested for Hdac1 binding to their promoter-proximal cis-regulatory elements. Surprisingly, we found that Hdac1 is specifically and stably associated with DNA sequences within the promoter region of ascl1b during neurogenesis, and that this Hdac1-ascl1b interaction is abolished in hdac1 mutant embryos. CONCLUSIONS: We conclude that Hdac1 regulates histone acetylation and methylation in the developing zebrafish embryo and promotes the sustained, co-ordinate transcription of a small set of transcription factor genes that control expansion and diversification of cell fates within the developing CNS. Our in vivo chromatin immunoprecipitation results also suggest a specific function for Hdac1 in directly regulating transcription of a key member of this group of genes, ascl1b, from the beginning of neurogenesis onwards. Taken together, our observations indicate a novel role for Hdac1 as a positive regulator of gene transcription during development of the vertebrate CNS, in addition to its more well-established function in transcriptional repression.


Subject(s)
Embryo, Nonmammalian/enzymology , Embryo, Nonmammalian/metabolism , Histone Deacetylase 1/metabolism , Neurogenesis/physiology , Zebrafish Proteins/genetics , Zebrafish/embryology , Zebrafish/metabolism , Animals , Chromatin Immunoprecipitation , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Histone Deacetylase 1/genetics , Neurogenesis/genetics , Transcription, Genetic/genetics , Zebrafish/genetics
9.
Hum Mol Genet ; 18(3): 391-404, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-18996920

ABSTRACT

Schizophrenia may arise from subtle abnormalities in brain development due to alterations in the functions of candidate susceptibility genes such as Disrupted-in-schizophrenia 1 (DISC1) and Neuregulin 1 (NRG1). To provide novel insights into the functions of DISC1 in brain development, we mapped the expression of zebrafish disc1 and set out to characterize its role in early embryonic development using morpholino antisense methods. These studies revealed a critical requirement for disc1 in oligodendrocyte development by promoting specification of olig2-positive cells in the hindbrain and other brain regions. Since NRG1 has well-documented roles in myelination, we also analyzed the roles of nrg1 and ErbB signalling in zebrafish brain development and we observed strikingly similar defects to those seen in disc1 morphant embryos. In addition to their effects on oligodendrocyte development, knock-down of disc1 or nrg1 caused near total loss of olig2-positive cerebellar neurones, but caused no apparent loss of spinal motor neurones. These findings suggest that disc1 and nrg1 function in common or related pathways controlling development of oligodendrocytes and neurones from olig2-expressing precursor cells. Like DISC1 and NRG1, OLIG2 and ERBB4 are promising candidate susceptibility genes for schizophrenia. Hence our findings in the zebrafish embryo suggest that hitherto unappreciated neurodevelopmental connections may exist between key human schizophrenia susceptibility genes. These connections could be investigated in Disc1 and Nrg1 mouse models and in genetically defined groups of patients in order to determine whether they are relevant to the pathobiology of schizophrenia. GenBank accession number for Danio rerio disc1: EU273350.


Subject(s)
Body Patterning , Nerve Tissue Proteins/metabolism , Neuregulin-1/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Rhombencephalon/growth & development , Zebrafish Proteins/metabolism , Zebrafish/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Humans , Nerve Tissue Proteins/genetics , Neuregulin-1/genetics , Oligodendrocyte Transcription Factor 2 , Rhombencephalon/embryology , Rhombencephalon/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism , Signal Transduction , Zebrafish/embryology , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/genetics
10.
Mol Cell Endocrinol ; 535: 111372, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34175410

ABSTRACT

In this article we aim to provide an overview of the zebrafish interrenal development and function, as well as a review of its contribution to basic and translational research. A search of the PubMed database identified 41 relevant papers published over the last 20 years. Based on the common themes identified, we discuss the organogenesis of the interrenal gland and its functional development and we review what is known about the genes involved in zebrafish steroidogenesis. We also outline the consequences of specific defects in steroid biosynthesis, as revealed by evidence from genetically engineered zebrafish models, including cyp11a2, cyp21a2, hsd3b1, cyp11c1 and fdx1b deficiency. Finally, we summarise the impact of different chemicals and environmental factors on steroidogenesis. Our review highlights the utility of zebrafish as a research model for exploring important areas of basic science and human disease, especially in the current context of rapid technological progress in the field of Molecular Biology.


Subject(s)
Interrenal Gland/embryology , Steroids/biosynthesis , Zebrafish/growth & development , Animals , Animals, Genetically Modified , Genetic Engineering , Interrenal Gland/metabolism , Organogenesis , Zebrafish/genetics , Zebrafish/metabolism
11.
J Endocrinol ; 247(2): 197-212, 2020 11.
Article in English | MEDLINE | ID: mdl-32805708

ABSTRACT

The roles of androgens in male reproductive development and function in zebrafish are poorly understood. To investigate this topic, we employed CRISPR/Cas9 to generate cyp11c1 (11ß-hydroxylase) mutant zebrafish lines. Our study confirms recently published findings from a different cyp11c1-/- mutant zebrafish line, and also reports novel aspects of the phenotype caused by loss of Cyp11c1 function. We report that Cyp11c1-deficient zebrafish display predominantly female secondary sex characteristics, but may possess either ovaries or testes. Moreover, we observed that cyp11c1-/- mutant male zebrafish are profoundly androgen- and cortisol-deficient. These results provide further evidence that androgens are dispensable for testis formation in zebrafish, as has been demonstrated previously in androgen-deficient and androgen-resistant zebrafish. Herein, we show that the testes of cyp11c1-/- mutant zebrafish exhibit a disorganised tubular structure; and for the first time demonstrate that the spermatic ducts, which connect the testes to the urogenital orifice, are severely hypoplastic in androgen-deficient zebrafish. Furthermore, we show that spermatogenesis and characteristic breeding behaviours are impaired in cyp11c1-/- mutant zebrafish. Expression of nanos2, a type A spermatogonia marker, was significantly increased in the testes of Cyp11c1-deficient zebrafish, whereas expression of markers for later stages of spermatogenesis was significantly decreased. These observations indicate that in zebrafish, production of type A spermatogonia is androgen-independent, but differentiation of type A spermatogonia is an androgen-dependent process. Overall, our results demonstrate that whilst androgens are not required for testis formation, they play important roles in determining secondary sexual characteristics, proper organisation of seminiferous tubules, and differentiation of male germ cells.


Subject(s)
Mixed Function Oxygenases/metabolism , Spermatozoa/metabolism , Testis/metabolism , Animals , Gene Expression Regulation, Developmental , Male , Mixed Function Oxygenases/genetics , Spermatogenesis/genetics , Spermatogenesis/physiology , Zebrafish
12.
J Endocrinol ; 244(2): 309-321, 2020 02.
Article in English | MEDLINE | ID: mdl-31693487

ABSTRACT

Cytochrome P450 side-chain cleavage enzyme, encoded by the CYP11A1 gene, catalyzes the first and rate-limiting step of steroid hormone biosynthesis. Previous morpholino-knockdown studies in zebrafish suggested cyp11a2 is a functional equivalent of human CYP11A1 and is essential for interrenal steroidogenesis in zebrafish larvae. The role of Cyp11a2 in adult zebrafish, particularly in gonadal steroidogenesis, remains elusive. To explore the role of Cyp11a2 in adults, we developed zebrafish mutant lines by creating deletions in cyp11a2 using the CRISPR/Cas9 genomic engineering approach. Homozygous cyp11a2 mutant zebrafish larvae showed an upregulation of the hypothalamic-pituitary-interrenal axis. Furthermore, these Cyp11a2-deficient zebrafish demonstrated profound glucocorticoid and androgen deficiencies. Cyp11a2 homozygotes only developed into males with feminized secondary sex characteristics. Adult cyp11a2 -/- mutant fish showed a lack of natural breeding behaviors. Histological characterization revealed disorganized testicular structure and significantly decreased numbers of mature spermatozoa. These findings are further supported by the downregulation of the expression of several pro-male genes in the testes of cyp11a2 homozygous zebrafish, including sox9a, dmrt1 and amh. Moreover, the spermatogonia markers nanos2 and piwil1 were upregulated, while the spermatocytes marker sycp3 and spermatids marker odf3b were downregulated in the testes of cyp11a2 homozygous mutants. Our expression analysis is consistent with our histological studies, suggesting that spermatogonia are the predominant cell types in the testes of cyp11a2 homozygous mutants. Our work thus demonstrates the crucial role of Cyp11a2 in interrenal and gonadal steroidogenesis in zebrafish larvae and adults.


Subject(s)
Cholesterol Side-Chain Cleavage Enzyme/metabolism , Steroids/biosynthesis , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Androgens/metabolism , Animals , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Female , Gene Expression Regulation, Developmental , Glucocorticoids/metabolism , Male , Spermatogenesis , Spermatozoa/enzymology , Spermatozoa/growth & development , Steroids/metabolism , Testis/enzymology , Testis/growth & development , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/genetics
13.
J Cereb Blood Flow Metab ; 40(2): 298-313, 2020 02.
Article in English | MEDLINE | ID: mdl-30398083

ABSTRACT

Neurovascular coupling (through which local cerebral blood flow changes in response to neural activation are mediated) is impaired in many diseases including diabetes. Current preclinical rodent models of neurovascular coupling rely on invasive surgery and instrumentation, but transgenic zebrafish coupled with advances in imaging techniques allow non-invasive quantification of cerebrovascular anatomy, neural activation, and cerebral vessel haemodynamics. We therefore established a novel non-invasive, non-anaesthetised zebrafish larval model of neurovascular coupling, in which visual stimulus evokes neuronal activation in the optic tectum that is associated with a specific increase in red blood cell speed in tectal blood vessels. We applied this model to the examination of the effect of glucose exposure on cerebrovascular patterning and neurovascular coupling. We found that chronic exposure of zebrafish to glucose impaired tectal blood vessel patterning and neurovascular coupling. The nitric oxide donor sodium nitroprusside rescued all these adverse effects of glucose exposure on cerebrovascular patterning and function. Our results establish the first non-mammalian model of neurovascular coupling, offering the potential to perform more rapid genetic modifications and high-throughput screening than is currently possible using rodents. Furthermore, using this zebrafish model, we reveal a potential strategy to ameliorate the effects of hyperglycemia on cerebrovascular function.


Subject(s)
Brain , Cerebrovascular Circulation , Hyperglycemia , Neovascularization, Pathologic , Neurovascular Coupling , Action Potentials , Animals , Brain/blood supply , Brain/pathology , Brain/physiopathology , Cerebral Arteries/pathology , Cerebral Arteries/physiopathology , Cerebral Veins/pathology , Cerebral Veins/physiopathology , Hyperglycemia/blood , Hyperglycemia/pathology , Hyperglycemia/physiopathology , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/physiopathology , Zebrafish
14.
Cell Microbiol ; 10(11): 2312-25, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18715285

ABSTRACT

With the emergence of multiply resistant Staphylococcus aureus, there is an urgent need to better understand the molecular determinants of S. aureus pathogenesis. A model of staphylococcal pathogenesis in zebrafish embryos has been established, in which host phagocytes are able to mount an effective immune response, preventing overwhelming infection from small inocula. Myeloid cell depletion, by pu.1 morpholino-modified antisense injection, removes this immune protection. Macrophages and neutrophils are both implicated in this immune response, phagocytosing circulating bacteria. In addition, in vivo phagocyte/bacteria interactions can be visualized within transparent embryos. A preliminary screen for bacterial pathogenesis determinants has shown that strains bearing mutations in perR, pheP and saeR are attenuated. perR and pheP mutants are deficient in growth in vivo, and their virulence is not fully restored by myeloid cell depletion. On the other hand, saeR mutants are able to grow in vivo, and are completely restored to virulence by myeloid cell depletion. Thus specific pathogen gene function can be matched with particular facets of host response. Zebrafish are a new addition to the tools available for the study of S. aureus pathogenesis, and may provide insights into the interactions of bacterial and host genomes in determining the outcome of infection.


Subject(s)
Disease Models, Animal , Phagocytes/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/pathogenicity , Zebrafish/immunology , Zebrafish/microbiology , Animals , Animals, Genetically Modified , Humans , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Phagocytosis/physiology , Recombinant Fusion Proteins , Staphylococcal Infections/mortality , Staphylococcus aureus/genetics , Staphylococcus aureus/immunology , Survival Rate , Zebrafish/embryology
15.
Endocrinology ; 160(10): 2401-2416, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31322700

ABSTRACT

The roles of steroids in zebrafish sex differentiation, gonadal development, and function of the adult gonad are poorly understood. Herein, we used ferredoxin 1b (fdx1b) mutant zebrafish to explore such processes. Fdx1b is an essential electron-providing cofactor to mitochondrial steroidogenic enzymes, which are crucial for glucocorticoid and androgen production in vertebrates. Fdx1b-/- zebrafish mutants develop into viable adults in which concentrations of androgens and cortisol are significantly reduced. Adult fdx1b-/- mutant zebrafish display predominantly female secondary sex characteristics but may possess either ovaries or testes, confirming that androgen signaling is dispensable for testicular differentiation in this species, as previously demonstrated in androgen receptor mutant zebrafish. Adult male fdx1b-/- mutant zebrafish exhibit reduced characteristic breeding behaviors and impaired sperm production, resulting in infertility in standard breeding scenarios. However, eggs collected from wild-type females can be fertilized by the sperm of fdx1b-/- mutant males by in vitro fertilization. The testes of fdx1b-/- mutant males are disorganized and lack defined seminiferous tubule structure. Expression of several promale and spermatogenic genes is decreased in the testes of fdx1b-/- mutant males, including promale transcription factor sox9a and spermatogenic genes igf3 and insl3. This study establishes an androgen- and cortisol-deficient fdx1b zebrafish mutant as a model for understanding the effects of steroid deficiency on sex development and reproductive function. This model will be particularly useful for further investigation of the roles of steroids in spermatogenesis, gonadal development, and regulation of reproductive behavior, thus enabling further elucidation of the physiological consequences of endocrine disruption in vertebrates.


Subject(s)
Ferredoxins/genetics , Gene Deletion , Gene Expression Regulation, Developmental/physiology , Testis/abnormalities , Zebrafish Proteins/metabolism , Animals , Feminization/genetics , Ferredoxins/metabolism , Infertility, Male , Male , Sex Differentiation/genetics , Sexual Development , Spermatogenesis , Zebrafish , Zebrafish Proteins/genetics
16.
J Dev Biol ; 6(1)2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29615555

ABSTRACT

The zebrafish is an established model to study the development and function of visual neuronal circuits in vivo, largely due to their optical accessibility at embryonic and larval stages. In the past decade multiple experimental paradigms have been developed to study visually-driven behaviours, particularly those regulated by the optic tectum, the main visual centre in lower vertebrates. With few exceptions these techniques are limited to young larvae (7-9 days post-fertilisation, dpf). However, many forms of visually-driven behaviour, such as shoaling, emerge at later developmental stages. Consequently, there is a need for an experimental paradigm to image the visual system in zebrafish larvae beyond 9 dpf. Here, we show that using NBT:GCaMP3 line allows for imaging neuronal activity in the optic tectum in late stage larvae until at least 21 dpf. Utilising this line, we have characterised the receptive field properties of tectal neurons of the 2-3 weeks old fish in the cell bodies and the neuropil. The NBT:GCaMP3 line provides a complementary approach and additional opportunities to study neuronal activity in late stage zebrafish larvae.

17.
J Neurosci Methods ; 309: 132-142, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30189284

ABSTRACT

BACKGROUND: Epilepsy affects around 1% of people, but existing antiepileptic drugs (AEDs) only offer symptomatic relief and are ineffective in approximately 30% of patients. Hence, new AEDs are sorely needed. However, a major bottleneck is the low-throughput nature of early-stage AED screens in conventional rodent models. This process could potentially be expedited by using simpler invertebrate systems, such as the nematode Caenorhabditis elegans. NEW METHOD: Head-bobbing convulsions were previously reported to be inducible by pentylenetetrazol (PTZ) in C. elegans with loss-of-function mutations in unc-49, which encodes a GABAA receptor. Given that epilepsy-linked mutations in human GABAA receptors are well documented, this could represent a clinically-relevant system for early-stage AED screens. However, the original agar plate-based assay is unsuited to large-scale screening and has not been validated for identifying AEDs. Therefore, we established an alternative streamlined, higher-throughput approach whereby mutants were treated with PTZ and AEDs via liquid-based incubation. RESULTS: Convulsions induced within minutes of PTZ exposure in unc-49 mutants were strongly inhibited by the established AED ethosuximide. This protective activity was independent of ethosuximide's suggested target, the T-type calcium channel, as a null mutation in the worm cca-1 ortholog did not affect ethosuximide's anticonvulsant action. COMPARISON WITH EXISTING METHOD: Our streamlined assay is AED-validated, feasible for higher throughput compound screens, and can facilitate insights into AED mechanisms of action. CONCLUSIONS: Based on an epilepsy-associated genetic background, this C. elegans unc-49 model of seizure-like activity presents an ethical, higher throughput alternative to conventional rodent seizure models for initial AED screens.


Subject(s)
Anticonvulsants/administration & dosage , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Seizures/prevention & control , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Convulsants/administration & dosage , Ethosuximide/administration & dosage , Pentylenetetrazole/administration & dosage , Receptors, GABA-A/genetics , Seizures/chemically induced
18.
Mech Dev ; 123(1): 24-30, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16324829

ABSTRACT

Histone deacetylases are critical components of transcriptional silencing mechanisms that regulate embryonic development. Recent work has shown that histone deacetylase 1 (hdac1) is required for neuronal specification during zebrafish CNS development. We show here that specification of oligodendrocytes, the myelinating cells of the CNS, also fails to occur in the hdac1 mutant hindbrain, but persistence of neural progenitors in the hindbrain ventricular zone, which express pax6a and sox2, is independent of hdac1 activity. Commitment of ventral neural progenitors to the oligodendrocyte fate is thought to require co-ordinate, hedgehog-dependent expression of olig2 and nkx2.2a in these cells, leading to expression of sox10 and subsequent differentiation of oligodendrocytes. Remarkably, transcription of olig2 is extinguished in ventral neural progenitors of the hdac1 mutant hindbrain, whereas expression of nkx2.2a is up-regulated in these cells, and sox10 expression is suppressed. Our results identify hdac1 as a novel, essential component of the mechanism that allocates neural progenitors to the oligodendrocyte fate, by attenuating expression of a subset of neural progenitor genes and rendering olig2 expression responsive to Hedgehog signalling.


Subject(s)
Central Nervous System/embryology , Central Nervous System/enzymology , Histone Deacetylases/metabolism , Oligodendroglia/enzymology , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Central Nervous System/cytology , Gene Expression Regulation, Developmental , Histone Deacetylase 1 , Histone Deacetylases/genetics , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/genetics , In Situ Hybridization , Nerve Tissue Proteins/genetics , Oligodendrocyte Transcription Factor 2 , Oligodendroglia/cytology , Rhombencephalon/cytology , Rhombencephalon/embryology , Rhombencephalon/enzymology , Stem Cells/cytology , Stem Cells/enzymology , Transcription Factors/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
19.
Matrix Biol ; 62: 58-74, 2017 10.
Article in English | MEDLINE | ID: mdl-27856309

ABSTRACT

Laminin-111 (α1ß1γ1) is a member of the Laminin family of extra-cellular matrix proteins that comprises 16 members, components of basement membranes. Laminin-111, one of the first Laminin proteins synthesised during embryogenesis, is required for basement membrane deposition and has essential roles in tissue morphogenesis and patterning. Yet, the mechanisms controlling Laminin-111 expression are poorly understood. We generated a zebrafish transgenic reporter line that reproduces faithfully the expression pattern of lama1, the gene encoding Laminin α1, and we used this reporter line to investigate lama1 transcriptional regulation. Our findings established that lama1 expression is controlled by intronic enhancers, including an enhancer directing expression in the paraxial mesoderm, anterior spinal cord and hindbrain, located in intron 1. We show that Hedgehog signalling is necessary and sufficient for lama1 transcription in the paraxial mesoderm and identify putative Gli/Zic binding sites that may mediate this control. These findings uncover a conserved role for Hedgehog signalling in the control of basement membrane assembly via its transcriptional regulation of lama1, and provide a mechanism to coordinate muscle cell fate specification in the zebrafish embryo.


Subject(s)
Hedgehog Proteins/metabolism , Laminin/genetics , Mesoderm/growth & development , Signal Transduction , Transcription, Genetic , Zebrafish Proteins/genetics , Zebrafish/growth & development , Animals , Animals, Genetically Modified , Binding Sites , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Introns , Laminin/chemistry , Laminin/metabolism , Mesoderm/metabolism , Promoter Regions, Genetic , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
20.
Endocrinology ; 158(12): 4165-4173, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28938470

ABSTRACT

Congenital adrenal hyperplasia is a group of common inherited disorders leading to glucocorticoid deficiency. Most cases are caused by 21-hydroxylase deficiency (21OHD). The systemic consequences of imbalanced steroid hormone biosynthesis due to severe 21OHD remains poorly understood. Therefore, we developed a zebrafish model for 21OHD, which focuses on the impairment of glucocorticoid biosynthesis. A single 21-hydroxylase gene (cyp21a2) is annotated in the zebrafish genome based on sequence homology. Our in silico analysis of the 21-hydroxylase (Cyp21a2) protein sequence suggests a sufficient degree of similarity for the usage of zebrafish cyp21a2 to model aspects of human 21OHD in vivo. We determined the spatiotemporal expression patterns of cyp21a2 by whole-mount in situ hybridization and reverse transcription polymerase chain reaction throughout early development. Early cyp21a2 expression is restricted to the interrenal gland (zebrafish adrenal counterpart) and the brain. To further explore the in vivo consequences of 21OHD we created several cyp21a2 null-allele zebrafish lines by using a transcription activator-like effector nuclease genomic engineering strategy. Homozygous mutant zebrafish larvae showed an upregulation of the hypothalamic-pituitary-interrenal (HPI) axis and interrenal hyperplasia. Furthermore, Cyp21a2-deficient larvae had a typical steroid profile, with reduced concentrations of cortisol and increased concentrations of 17-hydroxyprogesterone and 21-deoxycortisol. Affected larvae showed an upregulation of the HPI axis and interrenal hyperplasia. Downregulation of the glucocorticoid-responsive genes pck1 and fkbp5 indicated systemic glucocorticoid deficiency. Our work demonstrates the crucial role of Cyp21a2 in glucocorticoid biosynthesis in zebrafish larvae and establishes an in vivo model allowing studies of systemic consequences of altered steroid hormone synthesis.


Subject(s)
Adrenal Hyperplasia, Congenital/genetics , Interrenal Gland/metabolism , Steroid 21-Hydroxylase/genetics , Zebrafish Proteins/genetics , Adrenal Hyperplasia, Congenital/embryology , Adrenal Hyperplasia, Congenital/enzymology , Animals , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/enzymology , Embryo, Nonmammalian/metabolism , Fish Diseases/embryology , Fish Diseases/enzymology , Fish Diseases/genetics , Gene Expression Regulation, Developmental , Glucocorticoids/biosynthesis , Hyperplasia/enzymology , Hyperplasia/genetics , In Situ Hybridization , Interrenal Gland/embryology , Interrenal Gland/pathology , Larva/enzymology , Larva/genetics , Larva/metabolism , Mutation , Reverse Transcriptase Polymerase Chain Reaction , Steroid 21-Hydroxylase/metabolism , Zebrafish , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL