Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Blood Purif ; 53(4): 306-315, 2024.
Article in English | MEDLINE | ID: mdl-38228100

ABSTRACT

INTRODUCTION: Accumulation of ß2-microglobulin (B2M) in dialysis patients contributes to several comorbidities of end-stage kidney disease (ESKD). The LIXELLE® device adsorbs B2M from blood using sorbent bead technology. Studies in Japan showed that LIXELLE treatment during hemodialysis (HD) at blood flow rates up to 250 mL/min removes B2M above HD alone and is well tolerated. We investigated tolerance for LIXELLE treatment during HD at higher HD blood flow rates standard in the USA. METHODS: A prospective, open-label, non-randomized, single-arm, early-feasibility study (EFS) assessed tolerance and safety of LIXELLE treatment during HD at blood flow rates up to 450 mL/min. ESKD patients (40-75 years old) on thrice weekly outpatient HD were eligible. After a 1-week HD run-in, patients received LIXELLE plus HD at a blood flow rate of 250 mL/min (1 week), followed by LIXELLE plus HD at a blood flow rate up to 450 mL/min (1 week). These blood flow rates were tested with three LIXELLE column sizes in sequence (treatment = 6 weeks). B2M removal was assessed for each combination. RESULTS: Ten patients with a historic intradialytic hypotension (IDH) rate of 0.42 events/HD session/patient were enrolled. Nine patients completed all combinations without IDH events (treatment IDH rate: 0.56 events/HD session/patient). No treatment-emergent serious adverse events or significant changes in red blood cell, platelet, or complement indices except haptoglobin were reported. B2M reduction ratios and removal of select proteins (<40 kDa) increased with escalating column size and blood flow rate. CONCLUSION: LIXELLE plus HD across all column sizes was safe and well tolerated at blood flow rates up to 450 mL/min. Extent of B2M removal corresponded to column size-blood flow rate combinations. This EFS provides a risk profile to guide further studies of LIXELLE in ESKD patients at US-standard blood flow rates.


Subject(s)
Kidney Failure, Chronic , Renal Dialysis , Humans , Adult , Middle Aged , Aged , Renal Dialysis/adverse effects , Outpatients , Prospective Studies , Adsorption , beta 2-Microglobulin , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/etiology
2.
Nature ; 477(7362): 90-4, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21886162

ABSTRACT

In the central nervous system, ageing results in a precipitous decline in adult neural stem/progenitor cells and neurogenesis, with concomitant impairments in cognitive functions. Interestingly, such impairments can be ameliorated through systemic perturbations such as exercise. Here, using heterochronic parabiosis we show that blood-borne factors present in the systemic milieu can inhibit or promote adult neurogenesis in an age-dependent fashion in mice. Accordingly, exposing a young mouse to an old systemic environment or to plasma from old mice decreased synaptic plasticity, and impaired contextual fear conditioning and spatial learning and memory. We identify chemokines--including CCL11 (also known as eotaxin)--the plasma levels of which correlate with reduced neurogenesis in heterochronic parabionts and aged mice, and the levels of which are increased in the plasma and cerebrospinal fluid of healthy ageing humans. Lastly, increasing peripheral CCL11 chemokine levels in vivo in young mice decreased adult neurogenesis and impaired learning and memory. Together our data indicate that the decline in neurogenesis and cognitive impairments observed during ageing can be in part attributed to changes in blood-borne factors.


Subject(s)
Chemokines/blood , Chemokines/metabolism , Learning/physiology , Neurogenesis/physiology , Aging , Animals , Chemokine CCL11/blood , Chemokine CCL11/cerebrospinal fluid , Chemokine CCL11/metabolism , Chemokine CCL11/pharmacology , Chemokines/cerebrospinal fluid , Female , Learning/drug effects , Learning Disabilities/blood , Learning Disabilities/cerebrospinal fluid , Learning Disabilities/physiopathology , Male , Memory Disorders/blood , Memory Disorders/cerebrospinal fluid , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL , Neurogenesis/drug effects , Parabiosis , Plasma/chemistry , Time Factors
3.
eNeuro ; 10(6)2023 Jun.
Article in English | MEDLINE | ID: mdl-37321845

ABSTRACT

Peripheral administration of tissue inhibitor of metalloproteinases 2 (TIMP2), a protein inhibitor of matrix metalloproteinases (MMPs), has previously been shown to have beneficial effects on cognition and neurons in aged mice. Here, to better understand the potential of recombinant TIMP2 proteins, an IgG4Fc fusion protein (TIMP2-hIgG4) was developed to extend the plasma half-life of TIMP2. Following one month of administration of TIMP2 or TIMP2-hIgG4 via intraperitoneal injections, 23-month-old male C57BL/6J mice showed improved hippocampal-dependent memory in a Y-maze, increased hippocampal cfos gene expression, and increased excitatory synapse density in the CA1 and dentate gyrus (DG) of the hippocampus. Thus, fusion to hIgG4 extended the half-life of TIMP2 while retaining the beneficial cognitive and neuronal effects. Moreover, it retained its ability to cross the blood-brain barrier. To deepen the mechanistic understanding of the beneficial function of TIMP2 on neuronal activity and cognition, a TIMP2 construct lacking MMP inhibitory activity, Ala-TIMP2, was generated, which provides steric hindrance that prevents inhibition of MMPs by the TIMP2 protein while still allowing MMP binding. A comprehensive assessment of the MMP inhibitory and binding capacity of these engineered proteins is outlined. Surprisingly, MMP inhibition by TIMP2 was not essential for its beneficial effects on cognition and neuronal function. These findings both confirm previously published research, expand on the potential mechanism for the beneficial effects of TIMP2, and provide important details for a therapeutic path forward for TIMP2 recombinant proteins in aging-related cognitive decline.


Subject(s)
Cognition , Matrix Metalloproteinases , Animals , Male , Mice , Aging , Matrix Metalloproteinases/metabolism , Mice, Inbred C57BL
4.
Sci Adv ; 9(46): eadf8764, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37976357

ABSTRACT

Leukotrienes, a class of inflammatory bioactive lipids, are well studied in the periphery, but less is known of their importance in the brain. We identified that the enzyme leukotriene A4 hydrolase (LTA4H) is expressed in healthy mouse neurons, and inhibition of LTA4H in aged mice improves hippocampal dependent memory. Single-cell nuclear RNA sequencing of hippocampal neurons after inhibition reveals major changes to genes important for synaptic organization, structure, and activity. We propose that LTA4H inhibition may act to improve cognition by directly inhibiting the enzymatic activity in neurons, leading to improved synaptic function. In addition, LTA4H plasma levels are increased in both aging and Alzheimer's disease and correlated with cognitive impairment. These results identify a role for LTA4H in the brain, and we propose that LTA4H inhibition may be a promising therapeutic strategy to treat cognitive decline in aging related diseases.


Subject(s)
Cognitive Dysfunction , Epoxide Hydrolases , Mice , Animals , Epoxide Hydrolases/chemistry , Cognitive Dysfunction/drug therapy
5.
Brain Behav ; 12(9): e2736, 2022 09.
Article in English | MEDLINE | ID: mdl-35971662

ABSTRACT

INTRODUCTION: Increasing age is the number one risk factor for developing cognitive decline and neurodegenerative disease. Aged humans and mice exhibit numerous molecular changes that contribute to a decline in cognitive function and increased risk of developing age-associated diseases. Here, we characterize multiple age-associated changes in male C57BL/6J mice to understand the translational utility of mouse aging. METHODS: Male C57BL/6J mice from various ages between 2 and 24 months of age were used to assess behavioral, as well as, histological and molecular changes across three modalities: neuronal, microgliosis/neuroinflammation, and the neurovascular unit (NVU). Additionally, a cohort of 4- and 22-month-old mice was used to assess blood-brain barrier (BBB) breakdown. Mice in this cohort were treated with a high, acute dose of lipopolysaccharide (LPS, 10 mg/kg) or saline control 6 h prior to sacrifice followed by tail vein injection of 0.4 kDa sodium fluorescein (100 mg/kg) 2 h later. RESULTS: Aged mice showed a decline in cognitive and motor abilities alongside decreased neurogenesis, proliferation, and synapse density. Further, neuroinflammation and circulating proinflammatory cytokines were increased in aged mice. Additionally, we found changes at the BBB, including increased T cell infiltration in multiple brain regions and an exacerbation in BBB leakiness following chemical insult with age. There were also a number of readouts that were unchanged with age and have limited utility as markers of aging in male C57BL/6J mice. CONCLUSIONS: Here we propose that these changes may be used as molecular and histological readouts that correspond to aging-related behavioral decline. These comprehensive findings, in the context of the published literature, are an important resource toward deepening our understanding of normal aging and provide an important tool for studying aging in mice.


Subject(s)
Cognitive Dysfunction , Neurodegenerative Diseases , Aging/physiology , Animals , Cognitive Dysfunction/pathology , Cytokines/metabolism , Fluorescein/metabolism , Hippocampus/metabolism , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL
6.
J Neurochem ; 116(3): 385-95, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21091478

ABSTRACT

γ-Secretase modulators (GSMs) inhibit the generation of amyloidogenic Aß42 peptides and are promising agents for treatment or prevention of Alzheimer's disease (AD). Recently, a second generation of GSMs with favorable pharmacological properties has emerged, but preclinical studies to assess their efficacy in vivo are lacking. Such studies rely on transgenic mouse models that express amyloid precursor protein (APP) and presenilin (PSEN) mutations associated with early-onset familial AD. Previously, we have shown that certain PSEN1 mutations attenuated the response of cultured cells to GSMs and potentially confound in vivo studies in AD mouse models. However, different combinations of familial AD mutations might have synergistic or opposing effects, and we have now systematically determined the response of APP and PSEN1 mutations present in current AD models. Using a potent acidic GSM, we found that APP mutations, either single mutations or in combination, did not affect the potency of GSMs. In contrast, all PSEN1 mutations that have been used to accelerate pathological changes in AD models strongly attenuated the Aß42-lowering activity of GSMs with two exceptions (M146L, A246E). Similar results were obtained with potent non-acidic GSMs indicating that the attenuating effect of PSEN1 mutations cannot simply be overcome by increased potency or structural changes. Notably, two non-acidic compounds fully compensated the attenuating effect of the PSEN1-G384A mutation. Taken together, our findings indicate that most AD models with rapid pathology and advanced phenotypes are unsuitable for preclinical GSM studies. However, we also provide evidence that additional compound screens could discover GSMs that are able to break the attenuating effects of PSEN mutations.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Mutation/genetics , Presenilin-1/genetics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/physiology , Animals , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Presenilin-1/physiology , Structure-Activity Relationship
7.
J Neurochem ; 111(6): 1369-82, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19804379

ABSTRACT

The Swedish mutation within the amyloid precursor protein (APP) causes early-onset Alzheimer's disease due to increased cleavage of APP by BACE1. While beta-secretase shedding of Swedish APP (APPswe) largely results from an activity localized in the late secretory pathway, cleavage of wild-type APP occurs mainly in endocytic compartments. However, we show that liberation of Abeta from APPswe is still dependent on functional internalization from the cell surface. Inspite the unchanged overall beta-secretase cleaved soluble APP released from APP(swe) secretion, mutations of the APPswe internalization motif strongly reduced C99 levels and substantially decreased Abeta secretion. We point out that alpha-secretase activity-mediated conversion of C99 to C83 is the main cause of this Abeta reduction. Furthermore, we demonstrate that alpha-secretase cleavage of C99 even contributes to the reduction of Abeta secretion of internalization deficient wild-type APP. Therefore, inhibition of alpha-secretase cleavage increased Abeta secretion through diminished conversion of C99 to C83 in APP695, APP695swe or C99 expressing cells.


Subject(s)
Amyloid Precursor Protein Secretases/physiology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Peptide Fragments/metabolism , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/genetics , Animals , Biotinylation/methods , CHO Cells , Cricetinae , Cricetulus , Gene Expression Regulation/genetics , Humans , Mutation/genetics , Peptide Fragments/genetics , Protein Interaction Domains and Motifs/physiology , Transfection
8.
Neurodegener Dis ; 6(1-2): 1-8, 2009.
Article in English | MEDLINE | ID: mdl-18349521

ABSTRACT

BACKGROUND: Epidemiological studies have suggested that long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced incidence of Alzheimer's disease (AD). Several mechanisms have been proposed to explain these findings including increased shedding of the soluble ectodomain of the amyloid precursor protein (sAPP), which functions as a neurotrophic and neuroprotective factor in vitroand in vivo. OBJECTIVE: To clarify whether NSAIDs consistently stimulate sAPP secretion. METHODS: 293-EBNA cells with stable overexpression of an APP-alkaline phosphatase fusion protein (APP-AP), SH-SY5Y and PC12 cells or primary telencephalic chicken neurons were treated with ibuprofen or indomethacin. APP shedding was then determined by measuring AP activity in conditioned media, Western blot analysis with antibodies against total sAPP or specific for sAPP-alpha, or in a pulse-chase paradigm. RESULTS: AP activity in conditioned media was not increased after NSAID treatment of 293-EBNA cells whereas it was elevated by phorbol ester. Surprisingly, ibuprofen or indomethacin treatment of SH-SY5Y and PC12 cells expressing endogenous APP did not cause changes in sAPP or sAPP-alpha secretion or downregulation of cellular APP. These findings were further corroborated in primary chicken neuronal cultures. CONCLUSIONS: Using various experimental settings, we were unable to confirm sAPP or sAPP-alpha stimulation with the NSAIDs ibuprofen and indomethacin in transfected and nontransfected cells of neuronal and nonneuronal origin. Importantly, these findings seem to rule out chronic sAPP stimulation as an alternative mechanism of NSAID action in AD.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Alkaline Phosphatase/adverse effects , Amyloid beta-Protein Precursor/drug effects , Animals , CHO Cells , Cell Line , Cell Line, Tumor , Cricetinae , Cricetulus , Ibuprofen/pharmacology , Indomethacin/pharmacology , Kinetics , Neuroblastoma , PC12 Cells/drug effects , Rats , Tetradecanoylphorbol Acetate/pharmacology
9.
J Exp Med ; 214(4): 1081-1092, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28298456

ABSTRACT

Recent genetic evidence supports a link between microglia and the complement system in Alzheimer's disease (AD). In this study, we uncovered a novel role for the microglial complement receptor 3 (CR3) in the regulation of soluble ß-amyloid (Aß) clearance independent of phagocytosis. Unexpectedly, ablation of CR3 in human amyloid precursor protein-transgenic mice results in decreased, rather than increased, Aß accumulation. In line with these findings, cultured microglia lacking CR3 are more efficient than wild-type cells at degrading extracellular Aß by secreting enzymatic factors, including tissue plasminogen activator. Furthermore, a small molecule modulator of CR3 reduces soluble Aß levels and Aß half-life in brain interstitial fluid (ISF), as measured by in vivo microdialysis. These results suggest that CR3 limits Aß clearance from the ISF, illustrating a novel role for CR3 and microglia in brain Aß metabolism and defining a potential new therapeutic target in AD.


Subject(s)
Amyloid beta-Peptides/analysis , Brain/metabolism , Macrophage-1 Antigen/physiology , Microglia/physiology , Alzheimer Disease/etiology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/physiology , Animals , Benzoates/pharmacology , Mice , Mice, Inbred C57BL , Proteolysis , Thiohydantoins/pharmacology
10.
JAMA Neurol ; 73(11): 1325-1333, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27598869

ABSTRACT

IMPORTANCE: Alzheimer disease (AD) pathology starts long before clinical symptoms manifest, and there is no therapy to treat, delay, or prevent the disease. A shared blood circulation between 2 mice (aka parabiosis) or repeated injections of young blood plasma (plasma from 2- to 3-month-old mice) into old mice has revealed benefits of young plasma on synaptic function and behavior. However, to our knowledge, the potential benefit of young blood has not been tested in preclinical models of neurodegeneration or AD. OBJECTIVES: To determine whether young blood plasma ameliorates pathology and cognition in a mouse model for AD and could be a possible future treatment for the disease. DESIGN, SETTING, AND PARTICIPANTS: In this preclinical study, mice that harbor a human mutant APP gene, which causes familial AD, were aged to develop AD-like disease including accumulation of amyloid plaques, loss of synaptic and neuronal proteins, and behavioral deficits. The initial parabiosis studies were done in 2010, and the final studies were conducted in 2014. Alzheimer disease model mice were then treated either by surgically connecting them with a young healthy mouse, thus providing a shared blood circulation through parabiosis, or through repeated injections of plasma from young mice. MAIN OUTCOMES AND MEASURES: Neuropathological parameters and changes in hippocampal gene expression in response to the treatment were assessed. In addition, cognition was tested in AD model mice intravenously injected with young blood plasma. RESULTS: Aged mutant amyloid precursor protein mice with established disease showed a near complete restoration in levels of synaptic and neuronal proteins after exposure to young blood in parabiosis (synaptophysin P = .02; calbindin P = .02) or following intravenous plasma administration (synaptophysin P < .001; calbindin P = .14). Amyloid plaques were not affected, but the beneficial effects in neurons in the hippocampus were accompanied by a reversal of abnormal extracellular receptor kinase signaling (P = .05), a kinase implicated in AD. Moreover, young plasma administration was associated with improved working memory (P = .01) and associative memory (P = .02) in amyloid precursor protein mice. CONCLUSIONS AND RELEVANCE: Factors in young blood have the potential to ameliorate disease in a model of AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Blood Component Transfusion/methods , Cross Circulation/methods , Hippocampus/metabolism , Age Factors , Amyloid beta-Protein Precursor , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL