Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35193978

ABSTRACT

The architectural protein histone-like protein from Escherichia coli strain U93 (HU) is the most abundant bacterial DNA binding protein and highly conserved among bacteria and Apicomplexan parasites. It not only binds to double-stranded DNA (dsDNA) to maintain DNA stability but also, interacts with RNAs to regulate transcription and translation. Importantly, HU is essential to cell viability for many bacteria; hence, it is an important antibiotic target. Here, we report that Gp46 from bacteriophage SPO1 of Bacillus subtilis is an HU inhibitor whose expression prevents nucleoid segregation and causes filamentous morphology and growth defects in bacteria. We determined the solution structure of Gp46 and revealed a striking negatively charged surface. An NMR-derived structural model for the Gp46-HU complex shows that Gp46 occupies the DNA binding motif of the HU and therefore, occludes DNA binding, revealing a distinct strategy for HU inhibition. We identified the key residues responsible for the interaction that are conserved among HUs of bacteria and Apicomplexans, including clinically significant Mycobacterium tuberculosis, Acinetobacter baumannii, and Plasmodium falciparum, and confirm that Gp46 can also interact with these HUs. Our findings provide detailed insight into a mode of HU inhibition that provides a useful foundation for the development of antibacteria and antimalaria drugs.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Bacteriophages/metabolism , DNA-Binding Proteins/antagonists & inhibitors , Glycoproteins/metabolism , Viral Proteins/metabolism , Bacterial Proteins/metabolism , DNA/metabolism , DNA-Binding Proteins/metabolism , Protein Binding
2.
Nano Lett ; 24(20): 6061-6068, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728017

ABSTRACT

van der Waals (vdW) superlattices, comprising different 2D materials aligned alternately by weak interlayer interactions, offer versatile structures for the fabrication of novel semiconductor devices. Despite their potential, the precise control of optoelectronic properties with interlayer interactions remains challenging. Here, we investigate the discrepancies between the SnS/TiS2 superlattice (SnTiS3) and its subsystems by comprehensive characterization and DFT calculations. The disappearance of certain Raman modes suggests that the interactions alter the SnS subsystem structure. Specifically, such structural changes transform the band structure from indirect to direct band gap, causing a strong PL emission (∼2.18 eV) in SnTiS3. In addition, the modulation of the optoelectronic properties ultimately leads to the unique phenomenon of thermally activated photoluminescence. This phenomenon is attributed to the inhibition of charge transfer induced by tunable intralayer strains. Our findings extend the understanding of the mechanism of interlayer interactions in van der Waals superlattices and provide insights into the design of high-temperature optoelectronic devices.

3.
Soft Matter ; 20(23): 4548-4560, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38502376

ABSTRACT

Nanoparticles present in various environments can interact with living organisms, potentially leading to deleterious effects. Understanding how these nanoparticles interact with cell membranes is crucial for rational assessment of their impact on diverse biological processes. While previous research has explored particle-membrane interactions, the dynamic processes of particle wrapping by fluid vesicles remain incompletely understood. In this study, we introduce a force-based, continuum-scale model utilizing triangulated mesh representation and discrete differential geometry to investigate particle-vesicle interaction dynamics. Our model captures the transformation of vesicle shape and nanoparticle wrapping by calculating the forces arising from membrane bending energy and particle adhesion energy. Inspired by cell phagocytosis of large particles, we focus on establishing a quantitative understanding of large-scale vesicle deformation induced by the interaction with particles of comparable sizes. We first examine the interactions between spherical vesicles and individual nanospheres, both externally and internally, and quantify energy landscapes across different wrapping fractions of the nanoparticles. Furthermore, we explore multiple particle interactions with biologically relevant fluid vesicles with nonspherical shapes. Our study reveals that initial particle positions and interaction sequences are critical in determining the final equilibrium shapes of the vesicle-particle complexes in these interactions. These findings emphasize the importance of nanoparticle positioning and wrapping fractions in the dynamics of particle-vesicle interactions, providing crucial insights for future research in the field.

4.
J Chem Inf Model ; 64(4): 1261-1276, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38327033

ABSTRACT

With recent breakthroughs and advances in synthetic chemistry, carbon nanobelts (CNBs) have become an emerging hot topic in chemistry and materials science. Owing to their unique molecular structures, CNBs have intriguing properties with applications in synthetic materials, host-guest chemistry, optoelectronics, and so on. Although a considerable number of CNBs with diverse forms have been synthesized, no systematic nomenclature is available yet for this important family of macrocycles. Moreover, little is known about the detailed isomerism of CNBs, which, in fact, exhibits greater complexity than that of carbon nanotubes. The copious variety of CNB isomers, along with the underlying structure-property relationships, bears fundamental relevance to the ongoing design and synthesis of novel nanobelts. In this paper, we propose an elegant approach to systematically enumerate, classify, and name all possible isomers of CNBs. Besides the simplest, standard CNBs defined by chiral indices (n, m), the nonstandard CNBs (n, m, l) involve an additional winding index l. Based on extensive quantum chemical calculations, we present a comprehensive study of the relative isomer stability of CNBs containing up to 30 rings. A simple Hückel-based model with a high predictive power reveals that the relative stability of standard CNBs is governed by the π stabilization and the strain destabilization induced by the cylindrical carbon framework, and the former effect prevails over the latter. For nonstandard CNBs, a third stability factor, the H···H repulsion in the benzo[c]phenanthrene-like motifs, is also shown to be important and can be incorporated into the simple quantitative model. In general, lower-energy CNB isomers have a larger HOMO-LUMO gap, suggesting that their thermodynamic stability coincides with kinetic stability. The most stable CNB isomers determined can be considered the optimal targets for future synthesis. These results lay an initial foundation and provide a useful theoretical tool for further research on CNBs and related analogues.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Molecular Structure , Isomerism , Thermodynamics
5.
Phys Chem Chem Phys ; 26(9): 7877-7889, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38376476

ABSTRACT

Cycloarenes constitute a captivating class of polycyclic aromatic hydrocarbons with unique structures and properties, but their synthesis represents a challenging task in organic chemistry. Kekulenes and edge-extended kekulenes as classic types of cycloarenes play an important role in the comprehension of π electron distribution, but their sparse molecular diversity considerably limits their further development and application. In this work, we propose two novel classes of cycloarenes, the generalized kekulenes and the clarenes. Using density functional theory, we carry out a comprehensive study of all possible isomers of the generalized kekulenes and clarenes with different sizes. By applying a simple Hückel model, we show that π delocalization plays a crucial role in determining the relative stability of isomers. We also discover that π-π stacking is commonly present in certain larger clarenes and provides a considerable additional stabilization effect, making the corresponding isomers the lowest-energy ones. Among all considered typical looped polyarenes, generalized kekulenes and/or clarenes are revealed to be the energetically most stable forms, suggesting that these novel cycloarenes proposed here would be viable targets for future synthetic work. The simulated 1H NMR spectra and UV-vis absorption spectra provide valuable information about the electronic and optoelectronic properties for the most stable generalized kekulene and clarene species and may support their identification in future synthesis and experimental characterization.

6.
Bioorg Chem ; 143: 107017, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056388

ABSTRACT

Eleven new amides, four racemic pairs of (±)-chlorahupetamides A, B, D, E (1, 2, 4, 5) and chlorahupetamides C, F, G (3, 6, 7), have been isolated from Chloranthus henryi var. hupehensis. Compounds 1-3 are the first naturally occurring dimers via an unprecedented [2 + 2] cycloaddition derived from two dissimilar cinnamic acid amides, while compounds 4 and 5 represent the first examples of lignanamides in Chloranthus; together with two new hydroxycinnamic acid amide monomers (6-7), these compounds were obtained. Their structures were characterized by nuclear magnetic resonance (NMR), electronic circular dichroism (ECD), and X-ray diffraction analysis. Meanwhile, an LPS-induced BV-2 cell inflammatory model was used to determine the potential anti-inflammatory activity of all the isolated compounds. Intriguingly, compound -1 treatment showed a much greater inhibition of TNF-α expression with an EC50 value of 1.80 µM, while compound + 1 had more advantages in reducing IL-1ß expression with an EC50 value of 19.93 µM. Moreover, compounds + 1 and -1 could significantly suppress inflammation and inhibit the Akt signaling pathway by decreasing the phosphorylated protein levels of Akt.


Subject(s)
Anti-Inflammatory Agents , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Molecular Structure
7.
Bioorg Chem ; 147: 107420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718461

ABSTRACT

Phytochemical analysis of Chloranthus henryi var. hupehensis roots led to the identification of a new eudesmane sesquiterpenoid dimer, 18 new sesquiterpenoids, and three known sesquiterpenoids. Among the isolates, 1 was a rare sesquiterpenoid dimer that is assembled by a unique oxygen bridge (C11-O-C8') of two highly rearranged eudesmane-type sesquiterpenes with the undescribed C16 carbon framework. (+)-2 and (-)-2 were a pair of new skeleton dinorsesquiterpenoids with a remarkable 6/6/5 tricyclic ring framework including one γ-lactone ring and the bicyclo[3.3.1]nonane core. Their structures were elucidated using spectroscopic data, single-crystal X-ray diffraction analysis, and quantum chemical computations. In the LPS-induced BV-2 microglial cell model, 17 suppressed IL-1ß and TNF-α expression with EC50 values of 6.81 and 2.76 µM, respectively, indicating its excellent efficacy in inhibiting inflammatory factors production in a dose dependent manner and without cytotoxicity. In subsequent mechanism studies, compounds 3, 16, and 17 could reduce IL-1ß and TNF-α production by inhibiting IKBα/p65 pathway activation.


Subject(s)
Dose-Response Relationship, Drug , Plant Roots , Sesquiterpenes , Signal Transduction , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Plant Roots/chemistry , Signal Transduction/drug effects , Molecular Structure , Mice , Animals , Structure-Activity Relationship , Transcription Factor RelA/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Drug Discovery , NF-KappaB Inhibitor alpha/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification
8.
Mikrochim Acta ; 191(8): 466, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39017814

ABSTRACT

The CRISPR/Cas13 nucleases have been widely documented for nucleic acid detection. Understanding the intricacies of CRISPR/Cas13's reaction components is pivotal for harnessing its full potential for biosensing applications. Herein, we report on the influence of CRISPR/Cas13a reaction components on its trans-cleavage activity and the development of an on-chip total internal reflection fluorescence microscopy (TIRFM)-powered RNA sensing system. We used SARS-CoV-2 synthetic RNA and pseudovirus as a model system. Our results show that optimizing Mg2+ concentration, reporter length, and crRNA combination significantly improves the detection sensitivity. Under optimized conditions, we detected 100 fM unamplified SARS-CoV-2 synthetic RNA using a microtiter plate reader. To further improve sensitivity and provide a new amplification-free RNA sensing toolbox, we developed a TIRFM-based amplification-free RNA sensing system. We were able to detect RNA down to 100 aM. Furthermore, the TIRM-based detection system developed in this study is 1000-fold more sensitive than the off-coverslip assay. The possible clinical applicability of the system was demonstrated by detecting SARS-CoV-2 pseudovirus RNA. Our proposed sensing system has the potential to detect any target RNA with slight modifications to the existing setup, providing a universal RNA detection platform.


Subject(s)
CRISPR-Cas Systems , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , RNA, Viral/analysis , RNA, Viral/genetics , Humans , COVID-19/diagnosis , COVID-19/virology , Biosensing Techniques/methods , CRISPR-Associated Proteins , Microscopy, Fluorescence , Lab-On-A-Chip Devices , Limit of Detection , Magnesium/chemistry , COVID-19 Nucleic Acid Testing/methods
9.
Nano Lett ; 23(16): 7599-7606, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37531458

ABSTRACT

Zero-dimensional organic-inorganic metal halide hybrids provide ideal bulk-crystal platforms for exploring the pressure engineering of electron-phonon coupling (EPC) and self-trapped exciton (STE) emission at the molecular level. However, the low stiffness of inorganic clusters hinders the reversible tuning of these physical properties. Herein, we designed a Sb3+-doped metal halide with a high emission yield (89.4%) and high bulk modulus (35 GPa) that enables reversible and enhanced STE emission (20-fold) under pressure. The high lattice rigidity originates from the corner-shared cage-structured inorganic tetramers and ring-shaped organic ligands. Further, we reveal that the pressure-enhanced emission regime below 4.5 GPa is owing to the lattice hardening and preferably EPC strength reducing, while the pressure-insensitive emission regime within 4.5-8.5 GPa results from the enhanced intercluster Coulombic attraction force that resists intracluster compression. These results provide insights into the structure-property relation and molecular engineering of zero-dimensional metal halides toward wide-band and pressure-sensitive light sources.

10.
Angew Chem Int Ed Engl ; : e202411503, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985723

ABSTRACT

Anisotropy is crucial for birefringence (Δn) in optical materials, but optimizing it remains a formidable challenge (Δn > 0.3). Supramolecular frameworks incorporating π-conjugated components are promising for achieving enhanced birefringence since their structural diversity and inherent anisotropy. Herein, we first synthesized (C6H6NO2)+Cl- (NAC). And then constructed a halogen bonded supramolecular framework I+(C6H4NO2)- (INA) by halogen aliovalent substitution of Cl- with I+. The organic moieties are protonated and deprotonated nicotinic acid (NA), respectively. The antiparallel arrangement of birefringent-active units in NAC and INA leads to significant differences in bonding characteristics between interlayer and intralayer domains. Moreover, [O···I+···N] halogen bond in 1D [I+(C6H4NO2)-] chain exhibits stronger interactions and stricter directionality, resulting in a more pronounced in-plane anisotropy between the intrachain and interchain directions. Consequently, INA exhibits exceptional birefringent performance, with a value of 0.778 at 550 nm, twice that of NAC (0.363 at 550 nm). This value significantly exceeds those of commercial birefringent crystals, such as CaCO3 (0.172 at 546 nm), and is the highest reported value among ultraviolet birefringent crystals. This work presents a novel design strategy that employs halogen bonds as connection sites and modes for birefringent-active units, opening new avenues for developing high-performance birefringent crystals.

11.
Angew Chem Int Ed Engl ; 63(24): e202405092, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38591230

ABSTRACT

Zeolite synthesis under acidic conditions has always presented a challenge. In this study, we successfully prepared series of ZSM-5 zeolite nanosheets (Z-5-SCA-X) over a broad pH range (4 to 13) without the need for additional supplements. This achievement was realized through aggregation crystallization of ZSM-5 zeolite subcrystal (Z-5-SC) with highly short-range ordering and ultrasmall size extracted from the synthetic system of ZSM-5 zeolite. Furthermore, the crystallization behavior of Z-5-SC was investigated, revealing its non-classical crystallization process under mildly alkaline and acidic conditions (pH<10), and the combination of classical and non-classical processes under strongly alkaline conditions (pH≥10). What's particularly intriguing is that, the silanol nest content in the resultant Z-5-SCA-X samples appears to be dependent on the pH values during the Z-5-SC crystallization process rather than its crystallinity. Finally, the results of the furfuryl alcohol etherification reaction demonstrate that reducing the concentration of silanol nests significantly enhances the catalytic performance of the Z-5-SCA-X zeolite. The ability to synthesize zeolite in neutral and acidic environments without the additional mineralizing agents not only broadens the current view of traditional zeolite synthesis but also provides a new approach to control the silanol nest content of zeolite catalysts.

12.
J Am Chem Soc ; 145(19): 10763-10778, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37092900

ABSTRACT

The recent successful preparation of infinitene has sparked widespread attention due to its aesthetic appeal and synthetic challenge. Spectroscopic measurements and follow-up computational investigations suggest that infinitene holds fundamental significance and potential applications in chiroptics, optoelectronics, asymmetric synthesis, and supramolecular chemistry. However, unlike other looped polyarenes enriched with sizes and shapes, the infinitene molecule seems, so far, the only known example of this fascinating new form of nanocarbons, whose further exploitation would be considerably limited because of the lack of molecular diversity. Here, we introduce a whole new family of generalized infinitenes with different sizes and topologies. Three types of infinitene structures are rationally designed by joining two units of coronene, kekulene, or their extended analogs. The constructed molecules of varying sizes, each with a large number of possible topoisomers, are systematically studied by DFT calculations. Comprehensive analysis using a simple energy decomposition model uncovers that the stability of infinitenes is governed by the interplay among π delocalization, steric strain, and π-π stacking. While the first two factors are crucial to the stability of smaller infinitenes, the latter is the primary stabilizing interaction for larger infinitenes. Most importantly, we show that larger-sized infinitenes are actually the energetically most favorable form among all known looped polyarenes; their substantial thermodynamic stability surpassing that of circulenes, various carbon nanobelts, and kekulene-like macrocycles renders them promising targets for synthesis. The simulated 1H NMR, UV-vis, and circular dichroism spectra along with optical rotations for the most stable infinitene species may help their identification in future synthetic efforts.

13.
Anal Chem ; 95(32): 11997-12005, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37505456

ABSTRACT

An aerosol jet printing-enabled dual-function biosensor for the sensitive detection of pathogens using SARS-CoV-2 RNA as an example has been developed. A CRISPR-Cas13:guide-RNA complex is activated in the presence of a target RNA, leading to the collateral trans-cleavage of ssRNA probes that contain a horseradish peroxidase (HRP) tag. This, in turn, catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by HRP, resulting in a color change and electrochemical signal change. The colorimetric and electrochemical sensing protocol does not require complicated target amplification and probe immobilization and exhibits a detection sensitivity in the femtomolar range. Additionally, our biosensor demonstrates a wide dynamic range of 5 orders of magnitude. This low-cost aerosol inkjet printing technique allows for an amplification-free and integrated dual-function biosensor platform, which operates at physiological temperature and is designed for simple, rapid, and accurate point-of-care (POC) diagnostics in either low-resource settings or hospitals.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , Limit of Detection , Colorimetry/methods , RNA, Viral , COVID-19/diagnosis , Respiratory Aerosols and Droplets , Horseradish Peroxidase , Biosensing Techniques/methods
14.
J Med Virol ; 95(1): e28385, 2023 01.
Article in English | MEDLINE | ID: mdl-36478250

ABSTRACT

The global outbreak of the monkeypox virus (MPXV) highlights the need for rapid and cost-effective MPXV detection tools to effectively monitor and control the monkeypox disease. Herein, we demonstrated a portable CRISPR-Cas-based system for naked-eye detection of MPXV. The system harnesses the high selectivity of CRISPR-Cas12 and the isothermal nucleic acid amplification potential of recombinase polymerase amplification. It can detect both the current circulating MPXV clade and the original clades. We reached a limit of detection (LoD) of 22.4 aM (13.5 copies/µl) using a microtiter plate reader, while the visual LoD of the system is 75 aM (45 copies/µl) in a two-step assay, which is further reduced to 25 aM (15 copies/µl) in a one-pot system. We compared our results with quantitative polymerase chain reaction and obtained satisfactory consistency. For clinical application, we demonstrated a sensitive and precise visual detection method with attomolar sensitivity and a sample-to-answer time of 35 min.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Humans , Monkeypox virus/genetics , CRISPR-Cas Systems , Base Sequence , Mpox (monkeypox)/diagnosis , Nucleic Acid Amplification Techniques/methods
15.
Chemistry ; 29(24): e202300315, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36855249

ABSTRACT

Synthesis-oriented design led us to the discovery of a series of novel cyanine-borondifluoride curcuminoid hybrids called Nanchang Red (NCR) dyes that overcome the intrinsic low synthetic yields of symmetrical cyanine-difluoroboronate (BF2 )-hybridized NIR dyes. The hybridization endows NCR dyes with high molar extinction coefficients, efficient red-to-NIR emission, and enlarged Stokes shifts. Quantum chemical calculations revealed that the asymmetrical layout of the three key electron-withdrawing and electron-donating fragments results in a special pattern of partial charge separation and inconsistent degrees of charge delocalization on their π-conjugated backbones. While the nature of the hemicyanine fragment exerts significant influence on the excitation modes of NCR dyes, the borondifluoride hemicurcuminoid fragment is the major contributor to the enlarged Stokes shifts. Cell imaging experiments illustrated that a subtle change in the N-heterocycle of the hemicyanine fragment has a remarkable effect on the subcellular localization of NCR dyes. Unlike other previously reported cyanine-BF2 hybridized dyes, which mainly target mitochondria, the benzothiazole and indole-based NCR dyes accumulate in both the endoplasmic reticulum (ER) and lipid droplets of HeLa cells, whereas the benzoxazole and quinoline-based NCR dyes stain the ER specifically.


Subject(s)
Fluorescent Dyes , Quinolines , Humans , HeLa Cells , Fluorescent Dyes/chemistry , Carbocyanines/chemistry , Quinolines/chemistry
16.
Inorg Chem ; 62(45): 18331-18337, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37910803

ABSTRACT

Here, two isomeric ionic zero-dimensional indium bromide crystals of α (1)/ß (2)-[OPy][InBr4(Phen)] (OPy = N-octylpyridinium; Phen = 1,10-phenanthroline) have been isolated simply by changing the cooling conditions in solvothermal syntheses. Structural comparisons indicate their different supramolecular interactions, which can be confirmed by Hirshfeld surface analyses. The crystal 2 has additional hydrogen bonds and π-π interactions; as a result, the more compact stacking of 2 could result in a 10-fold higher photoluminescence (PL) quantum yield (PLQY) than that of 1. Density functional theory calculations confirm the electron transition from the inorganic moiety to the organic ligand, which provides a further understanding of the optical process. This work provides a new idea for designing PL indium-based halides by understanding the structure-PL relationship.

17.
Inorg Chem ; 62(35): 14422-14430, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37607342

ABSTRACT

Metal ion-doped zero-dimensional halide perovskites provide good platforms to generate broadband emission and explore the fundamental dynamics of emission regulations. Recently, Sb3+-doped zero-dimensional halide perovskites have attracted considerable attention for the high quantum yield of yellow emission; however, the triplet state recombination is activated and the singlet state emission is usually absent. Herein, we fabricate an Sb3+-doped zero-dimensional [(CH3)4N]2SnCl6 perovskite that can induce singlet and triplet emission. Density functional theory calculation shows that there are some overlaps between the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals, which may induce a large energy separation between the lowest excited triplet states (T1) and the lowest excited singlet states (S1) [ΔE(S1 - T1)], impeding all the carriers' transfer from the singlet state to the triplet state. As a result, the reserved singlet emission together with the triplet emission can be regulated by excitation wavelength in situ. In addition, different Bi3+ ratios are co-doped into Sb3+@[(CH3)4N]2SnCl6, resulting in a photoluminescence ex situ regulation. Single-phase white light LED and optical anti-counterfeiting are developed further.

18.
Inorg Chem ; 62(2): 1062-1068, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36594447

ABSTRACT

Polydopamine (PDA) is a good adhesion agent for lots of gels inspired by the mussel, whereas hybrid organic-inorganic perovskites (HOIPs) usually exhibit extraordinary optoelectronic performance. Herein, mussel-inspired chemistry has been integrated with two-dimensional HOIPs first, leading to the preparation of new crystal (HDA)2PbBr4 (1) (DA = dopamine). The organic cation dopamine can be introduced into PDA resulting in a thin film of (HPDA)2PbBr4 (PDA-1). The dissolved inorganic components of layered perovskite in DMF solution together with H2O2 addition can facilitate DA polymerization greatly. More importantly, PDA-1 can inherit an excellent semiconductor property of HOIPs and robust adhesion of the PDA hydrogel resulting in a self-adhesive photoelectric coating on various interfaces.


Subject(s)
Adhesives , Dopamine , Dopamine/chemistry , Resin Cements , Polymerization , Hydrogen Peroxide
19.
Biomed Chromatogr ; 37(5): e5607, 2023 May.
Article in English | MEDLINE | ID: mdl-36802077

ABSTRACT

HSK7653 is a novel super long-acting dipeptidyl peptidase-4 inhibitor, which is promising for the treatment of type 2 diabetes mellitus with the twice-monthly dosing regimen. In this article, a robust and sensitive HPLC coupled with tandem mass spectrometry method for determining the concentration of HSK7653 in human plasma and urine was developed and validated for the first time. Plasma and urine samples were prepared by protein precipitation. After that, the extracts were analyzed using an LC-20A HPLC system coupled with API 4000 tandem MS equipped with an electrospray ionization source in positive mode. Separation was obtained using an XBridge Phenyl column (2.1 × 50 mm, 3.5 µm) with a gradient elution of acetonitrile and water containing 0.1% formic acid and 5% acetonitrile at room temperature. This bioanalysis method has been fully validated and the results showed good sensitivity and specificity. In brief, the standard curves were linear over the concentration range of 2.00-2000 ng/ml for plasma and 20.0-20,000 ng/ml for urine, respectively. In addition, the precisions of inter- and intra-run of HSK7653 were less than 12.7% and the accuracies were -3.3% to 6.3% for both plasma and urine. Finally, this method was successfully applied to explore the pharmacokinetic characteristics of HSK7653 in Chinese healthy volunteers in a first-in-human study.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Humans , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Diabetes Mellitus, Type 2/drug therapy , Reproducibility of Results , Hypoglycemic Agents , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases
20.
Sensors (Basel) ; 23(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36850840

ABSTRACT

Value chain collaboration management is an effective means for enterprises to reduce costs and increase efficiency to enhance competitiveness. Vertical and horizontal collaboration have received much attention, but the current collaboration model combining the two is weak in terms of task assignment and node collaboration constraints in the whole production-distribution process. Therefore, in the enterprise dynamic alliance, this paper models the MVC (multi-value-chain) collaboration process for the optimization needs of the MVC collaboration network in production-distribution and other aspects. Then a MVC collaboration network optimization model is constructed with the lowest total production-distribution cost as the optimization objective and with the delivery cycle and task quantity as the constraints. For the high-dimensional characteristics of the decision space in the multi-task, multi-production end, multi-distribution end, and multi-level inventory production-distribution scenario, a genetic algorithm is used to solve the MVC collaboration network optimization model and solve the problem of difficult collaboration of MVC collaboration network nodes by adjusting the constraints among genes. In view of the multi-level characteristics of the production-distribution scenario, two chromosome coding methods are proposed: staged coding and integrated coding. Moreover, an algorithm ERGA (enhanced roulette genetic algorithm) is proposed with enhanced elite retention based on a SGA (simple genetic algorithm). The comparative experiment results of SGA, SEGA (strengthen elitist genetic algorithm), ERGA, and the analysis of the population evolution process show that ERGA is superior to SGA and SEGA in terms of time cost and optimization results through the reasonable combination of coding methods and selection operators. Furthermore, ERGA has higher generality and can be adapted to solve MVC collaboration network optimization models in different production-distribution environments.

SELECTION OF CITATIONS
SEARCH DETAIL