Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Bioinformatics ; 40(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38407991

ABSTRACT

MOTIVATION: Complex tissues are dynamic ecosystems consisting of molecularly distinct yet interacting cell types. Computational deconvolution aims to dissect bulk tissue data into cell type compositions and cell-specific expressions. With few exceptions, most existing deconvolution tools exploit supervised approaches requiring various types of references that may be unreliable or even unavailable for specific tissue microenvironments. RESULTS: We previously developed a fully unsupervised deconvolution method-Convex Analysis of Mixtures (CAM), that enables estimation of cell type composition and expression from bulk tissues. We now introduce CAM3.0 tool that improves this framework with three new and highly efficient algorithms, namely, radius-fixed clustering to identify reliable markers, linear programming to detect an initial scatter simplex, and a smart floating search for the optimum latent variable model. The comparative experimental results obtained from both realistic simulations and case studies show that the CAM3.0 tool can help biologists more accurately identify known or novel cell markers, determine cell proportions, and estimate cell-specific expressions, complementing the existing tools particularly when study- or datatype-specific references are unreliable or unavailable. AVAILABILITY AND IMPLEMENTATION: The open-source R Scripts of CAM3.0 is freely available at https://github.com/ChiungTingWu/CAM3/(https://github.com/Bioconductor/Contributions/issues/3205). A user's guide and a vignette are provided.


Subject(s)
Algorithms , Ecosystem , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods
2.
Am J Hum Genet ; 107(5): 963-976, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33157009

ABSTRACT

NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Learning Disabilities/genetics , Mutation , Adaptor Proteins, Signal Transducing/deficiency , Adolescent , Animals , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Child , Female , Gene Expression , Genotype , HEK293 Cells , Humans , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Learning Disabilities/diagnosis , Learning Disabilities/pathology , Male , Mice , Mice, Knockout , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Pedigree , Phenotype , Pregnancy , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcriptome , Young Adult
3.
Bioinformatics ; 38(5): 1403-1410, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34904628

ABSTRACT

MOTIVATION: Complex biological tissues are often a heterogeneous mixture of several molecularly distinct cell subtypes. Both subtype compositions and subtype-specific (STS) expressions can vary across biological conditions. Computational deconvolution aims to dissect patterns of bulk tissue data into subtype compositions and STS expressions. Existing deconvolution methods can only estimate averaged STS expressions in a population, while many downstream analyses such as inferring co-expression networks in particular subtypes require subtype expression estimates in individual samples. However, individual-level deconvolution is a mathematically underdetermined problem because there are more variables than observations. RESULTS: We report a sample-wise Convex Analysis of Mixtures (swCAM) method that can estimate subtype proportions and STS expressions in individual samples from bulk tissue transcriptomes. We extend our previous CAM framework to include a new term accounting for between-sample variations and formulate swCAM as a nuclear-norm and ℓ2,1-norm regularized matrix factorization problem. We determine hyperparameter values using cross-validation with random entry exclusion and obtain a swCAM solution using an efficient alternating direction method of multipliers. Experimental results on realistic simulation data show that swCAM can accurately estimate STS expressions in individual samples and successfully extract co-expression networks in particular subtypes that are otherwise unobtainable using bulk data. In two real-world applications, swCAM analysis of bulk RNASeq data from brain tissue of cases and controls with bipolar disorder or Alzheimer's disease identified significant changes in cell proportion, expression pattern and co-expression module in patient neurons. Comparative evaluation of swCAM versus peer methods is also provided. AVAILABILITY AND IMPLEMENTATION: The R Scripts of swCAM are freely available at https://github.com/Lululuella/swCAM. A user's guide and a vignette are provided. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Gene Expression Profiling , Transcriptome , Humans , Gene Expression Profiling/methods , Computer Simulation
4.
Mol Psychiatry ; 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36280753

ABSTRACT

Mutations in many synaptic genes are associated with autism spectrum disorders (ASD), suggesting that synaptic dysfunction is a key driver of ASD pathogenesis. Among these mutations, the R451C substitution in the NLGN3 gene that encodes the postsynaptic adhesion molecule Neuroligin-3 is noteworthy because it was the first specific mutation linked to ASDs. In mice, the corresponding Nlgn3 R451C-knockin mutation recapitulates social interaction deficits of ASD patients and produces synaptic abnormalities, but the impact of the NLGN3 R451C mutation on human neurons has not been investigated. Here, we generated human knockin neurons with the NLGN3 R451C and NLGN3 null mutations. Strikingly, analyses of NLGN3 R451C-mutant neurons revealed that the R451C mutation decreased NLGN3 protein levels but enhanced the strength of excitatory synapses without affecting inhibitory synapses; meanwhile NLGN3 knockout neurons showed reduction in excitatory synaptic strengths. Moreover, overexpression of NLGN3 R451C recapitulated the synaptic enhancement in human neurons. Notably, the augmentation of excitatory transmission was confirmed in vivo with human neurons transplanted into mouse forebrain. Using single-cell RNA-seq experiments with co-cultured excitatory and inhibitory NLGN3 R451C-mutant neurons, we identified differentially expressed genes in relatively mature human neurons corresponding to synaptic gene expression networks. Moreover, gene ontology and enrichment analyses revealed convergent gene networks associated with ASDs and other mental disorders. Our findings suggest that the NLGN3 R451C mutation induces a gain-of-function enhancement in excitatory synaptic transmission that may contribute to the pathophysiology of ASD.

5.
Mol Psychiatry ; 26(3): 835-848, 2021 03.
Article in English | MEDLINE | ID: mdl-30976086

ABSTRACT

Many psychiatric disorders are characterized by a strong sex difference, but the mechanisms behind sex-bias are not fully understood. DNA methylation plays important roles in regulating gene expression, ultimately impacting sexually different characteristics of the human brain. Most previous literature focused on DNA methylation alone without considering the regulatory network and its contribution to sex-bias of psychiatric disorders. Since DNA methylation acts in a complex regulatory network to connect genetic and environmental factors with high-order brain functions, we investigated the regulatory networks associated with different DNA methylation and assessed their contribution to the risks of psychiatric disorders. We compiled data from 1408 postmortem brain samples in 3 collections to identify sex-differentially methylated positions (DMPs) and regions (DMRs). We identified and replicated thousands of DMPs and DMRs. The DMR genes were enriched in neuronal related pathways. We extended the regulatory networks related to sex-differential methylation and psychiatric disorders by integrating methylation quantitative trait loci (meQTLs), gene expression, and protein-protein interaction data. We observed significant enrichment of sex-associated genes in psychiatric disorder-associated gene sets. We prioritized 2080 genes that were sex-biased and associated with psychiatric disorders, such as NRXN1, NRXN2, NRXN3, FDE4A, and SHANK2. These genes are enriched in synapse-related pathways and signaling pathways, suggesting that sex-differential genes of these neuronal pathways may cause the sex-bias of psychiatric disorders.


Subject(s)
DNA Methylation , Mental Disorders , Brain , CpG Islands/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Female , Humans , Male , Mental Disorders/genetics , Quantitative Trait Loci
6.
Mol Psychiatry ; 26(7): 3444-3460, 2021 07.
Article in English | MEDLINE | ID: mdl-32929213

ABSTRACT

Schizophrenia (SCZ) is a neuropsychiatric disorder with aberrant expression of multiple genes. However, identifying its exact causal genes remains a considerable challenge. The brain-specific transcription factor POU3F2 (POU domain, class 3, transcription factor 2) has been recognized as a risk factor for SCZ, but our understanding of its target genes and pathogenic mechanisms are still limited. Here we report that POU3F2 regulates 42 SCZ-related genes in knockdown and RNA-sequencing experiments of human neural progenitor cells (NPCs). Among those SCZ-related genes, TRIM8 (Tripartite motif containing 8) is located in SCZ-associated genetic locus and is aberrantly expressed in patients with SCZ. Luciferase reporter and electrophoretic mobility shift assays (EMSA) showed that POU3F2 induces TRIM8 expression by binding to the SCZ-associated SNP (single nucleotide polymorphism) rs5011218, which affects POU3F2-binding efficiency at the promoter region of TRIM8. We investigated the cellular functions of POU3F2 and TRIM8 as they co-regulate several pathways related to neural development and synaptic function. Knocking down either POU3F2 or TRIM8 promoted the proliferation of NPCs, inhibited their neuronal differentiation, and impaired the excitatory synaptic transmission of NPC-derived neurons. These results indicate that POU3F2 regulates TRIM8 expression through the SCZ-associated SNP rs5011218, and both genes may be involved in the etiology of SCZ by regulating neural development and synaptic function.


Subject(s)
Carrier Proteins , Homeodomain Proteins , Nerve Tissue Proteins , Neural Stem Cells , POU Domain Factors , Schizophrenia , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , POU Domain Factors/genetics , POU Domain Factors/metabolism , Schizophrenia/genetics
7.
Mol Psychiatry ; 25(11): 2672-2684, 2020 11.
Article in English | MEDLINE | ID: mdl-32826963

ABSTRACT

Genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms (SNPs) associated with bipolar disorder (BD), but what the causal variants are and how they contribute to BD is largely unknown. In this study, we used FUMA, a GWAS annotation tool, to pinpoint potential causal variants and genes from the latest BD GWAS findings, and performed integrative analyses, including brain expression quantitative trait loci (eQTL), gene coexpression network, differential gene expression, protein-protein interaction, and brain intermediate phenotype association analysis to identify the functions of a prioritized gene and its connection to BD. Convergent lines of evidence prioritized protein-coding gene G Protein Nucleolar 3 (GNL3) as a BD risk gene, with integrative analyses revealing GNL3's roles in cell proliferation, neuronal functions, and brain phenotypes. We experimentally revealed that BD-related eQTL SNPs rs10865973, rs12635140, and rs4687644 regulate GNL3 expression using dual luciferase reporter assay and CRISPR interference experiment in human neural progenitor cells. We further identified that GNL3 knockdown and overexpression led to aberrant neuronal proliferation and differentiation, using two-dimensional human neural cell cultures and three-dimensional forebrain organoid model. This study gathers evidence that BD-related genetic variants regulate GNL3 expression which subsequently affects neuronal proliferation and differentiation.


Subject(s)
Bipolar Disorder/genetics , GTP-Binding Proteins/genetics , Genetic Predisposition to Disease/genetics , Nuclear Proteins/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
8.
Bioinformatics ; 35(1): 172-174, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29985970

ABSTRACT

Summary: Gene expression changes over the lifespan and varies among different tissues or cell types. Gene co-expression also changes by sex, age, different tissues or cell types. However, gene expression under the normal state and gene co-expression in the human brain has not been fully defined and quantified. Here we present a database named Brain EXPression Database (BrainEXP) which provides spatiotemporal expression of individual genes and co-expression in normal human brains. BrainEXP consists of 4567 samples from 2863 healthy individuals gathered from existing public databases and our own data, in either microarray or RNA-Seq library types. We mainly provide two analysis results based on the large dataset: (i) basic gene expression across specific brain regions, age ranges and sexes; (ii) co-expression analysis from different platforms. Availability and implementation: http://www.brainexp.org/. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Brain/growth & development , Databases, Genetic , Gene Expression Profiling , Computational Biology , Humans , RNA , Sequence Analysis, RNA
9.
Sci Transl Med ; 16(749): eadh9974, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38781321

ABSTRACT

Many psychiatric disorders exhibit sex differences, but the underlying mechanisms remain poorly understood. We analyzed transcriptomics data from 2160 postmortem adult prefrontal cortex brain samples from the PsychENCODE consortium in a sex-stratified study design. We compared transcriptomics data of postmortem brain samples from patients with schizophrenia (SCZ), bipolar disorder (BD), and autism spectrum disorder (ASD) with transcriptomics data of postmortem control brains from individuals without a known history of psychiatric disease. We found that brain samples from females with SCZ, BD, and ASD showed a higher burden of transcriptomic dysfunction than did brain samples from males with these disorders. This observation was supported by the larger number of differentially expressed genes (DEGs) and a greater magnitude of gene expression changes observed in female versus male brain specimens. In addition, female patient brain samples showed greater overall connectivity dysfunction, defined by a higher proportion of gene coexpression modules with connectivity changes and higher connectivity burden, indicating a greater degree of gene coexpression variability. We identified several gene coexpression modules enriched in sex-biased DEGs and identified genes from a genome-wide association study that were involved in immune and synaptic functions across different brain cell types. We found a number of genes as hubs within these modules, including those encoding SCN2A, FGF14, and C3. Our results suggest that in the context of psychiatric diseases, males and females exhibit different degrees of transcriptomic dysfunction and implicate immune and synaptic-related pathways in these sex differences.


Subject(s)
Autopsy , Brain , Mental Disorders , Sex Characteristics , Transcriptome , Humans , Female , Male , Transcriptome/genetics , Brain/metabolism , Brain/pathology , Mental Disorders/genetics , Mental Disorders/pathology , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Bipolar Disorder/pathology , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Gene Expression Profiling , Genome-Wide Association Study , Adult , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Gene Regulatory Networks , Middle Aged
10.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659857

ABSTRACT

Single-cell/nuclei RNA sequencing (sc/snRNA-Seq) is widely used for profiling cell-type gene expressions in biomedical research. An important but underappreciated issue is the quality of sc/snRNA-Seq data that would impact the reliability of downstream analyses. Here we evaluated the precision and accuracy in 18 sc/snRNA-Seq datasets. The precision was assessed on data from human brain studies with a total of 3,483,905 cells from 297 individuals, by utilizing technical replicates. The accuracy was evaluated with sample-matched scRNA-Seq and pooled-cell RNA-Seq data of cultured mononuclear phagocytes from four species. The results revealed low precision and accuracy at the single-cell level across all evaluated data. Cell number and RNA quality were highlighted as two key factors determining the expression precision, accuracy, and reproducibility of differential expression analysis in sc/snRNA-Seq. This study underscores the necessity of sequencing enough high-quality cells per cell type per individual, preferably in the hundreds, to mitigate noise in expression quantification.

11.
Sci Adv ; 10(21): eadh2588, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781336

ABSTRACT

Sample-wise deconvolution methods estimate cell-type proportions and gene expressions in bulk tissue samples, yet their performance and biological applications remain unexplored, particularly in human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk tissue RNA sequencing (RNA-seq), single-cell/nuclei (sc/sn) RNA-seq, and immunohistochemistry. A total of 1,130,767 nuclei per cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expressions. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk tissue or single-cell eQTLs did alone. Differential gene expressions associated with Alzheimer's disease, schizophrenia, and brain development were also examined using the deconvoluted data. Our findings, which were replicated in bulk tissue and single-cell data, provided insights into the biological applications of deconvoluted data in multiple brain disorders.


Subject(s)
Brain , Single-Cell Analysis , Transcriptome , Humans , Brain/metabolism , Single-Cell Analysis/methods , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Gene Expression Profiling/methods , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Genome-Wide Association Study/methods , Sequence Analysis, RNA/methods , Adult
12.
medRxiv ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38405973

ABSTRACT

Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet, the majority of these studies have been centered on European populations, leading to a constrained understanding of population diversities and disease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n=158), Europeans (EUR, n=408), and East Asians (EAS, n=217). When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs (representing ∼17% of all eQTLs pairs) linked to 1,276 genes (about 10% of all eGenes) and 198,769 SNPs (approximately 16% of all eSNPs) were identified only in the non-EUR populations. Over 90% of observed population differences in eQTLs could be traced back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare (MAF < 0.05) in the EUR population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched populations compared to mismatched ones. Prioritization analysis identified seven new risk genes ( SFXN2 , RP11-282018.3 , CYP17A1 , VPS37B , DENR , FTCDNL1 , and NT5DC2 ), and three potential novel regulatory variants in known risk genes ( CNNM2 , C12orf65 , and MPHOSPH9 ) that were missed in the EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the biological underpinnings of population structures but also pave the way for the identification of novel risk genes in SCZ.

13.
Science ; 384(6698): eadh0829, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781368

ABSTRACT

Neuropsychiatric genome-wide association studies (GWASs), including those for autism spectrum disorder and schizophrenia, show strong enrichment for regulatory elements in the developing brain. However, prioritizing risk genes and mechanisms is challenging without a unified regulatory atlas. Across 672 diverse developing human brains, we identified 15,752 genes harboring gene, isoform, and/or splicing quantitative trait loci, mapping 3739 to cellular contexts. Gene expression heritability drops during development, likely reflecting both increasing cellular heterogeneity and the intrinsic properties of neuronal maturation. Isoform-level regulation, particularly in the second trimester, mediated the largest proportion of GWAS heritability. Through colocalization, we prioritized mechanisms for about 60% of GWAS loci across five disorders, exceeding adult brain findings. Finally, we contextualized results within gene and isoform coexpression networks, revealing the comprehensive landscape of transcriptome regulation in development and disease.


Subject(s)
Alternative Splicing , Brain , Gene Expression Regulation, Developmental , Mental Disorders , Humans , Atlases as Topic , Autism Spectrum Disorder/genetics , Brain/metabolism , Brain/growth & development , Brain/embryology , Gene Regulatory Networks , Genome-Wide Association Study , Protein Isoforms/genetics , Protein Isoforms/metabolism , Quantitative Trait Loci , Schizophrenia/genetics , Transcriptome , Mental Disorders/genetics
14.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993743

ABSTRACT

Sample-wise deconvolution methods have been developed to estimate cell-type proportions and gene expressions in bulk-tissue samples. However, the performance of these methods and their biological applications has not been evaluated, particularly on human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk-tissue RNAseq, single-cell/nuclei (sc/sn) RNAseq, and immunohistochemistry. A total of 1,130,767 nuclei/cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expression. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk-tissue or single-cell eQTLs alone. Differential gene expression associated with multiple phenotypes were also examined using the deconvoluted data. Our findings, which were replicated in bulk-tissue RNAseq and sc/snRNAseq data, provided new insights into the biological applications of deconvoluted data.

15.
medRxiv ; 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36945630

ABSTRACT

Genomic regulatory elements active in the developing human brain are notably enriched in genetic risk for neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia, and bipolar disorder. However, prioritizing the specific risk genes and candidate molecular mechanisms underlying these genetic enrichments has been hindered by the lack of a single unified large-scale gene regulatory atlas of human brain development. Here, we uniformly process and systematically characterize gene, isoform, and splicing quantitative trait loci (xQTLs) in 672 fetal brain samples from unique subjects across multiple ancestral populations. We identify 15,752 genes harboring a significant xQTL and map 3,739 eQTLs to a specific cellular context. We observe a striking drop in gene expression and splicing heritability as the human brain develops. Isoform-level regulation, particularly in the second trimester, mediates the greatest proportion of heritability across multiple psychiatric GWAS, compared with eQTLs. Via colocalization and TWAS, we prioritize biological mechanisms for ~60% of GWAS loci across five neuropsychiatric disorders, nearly two-fold that observed in the adult brain. Finally, we build a comprehensive set of developmentally regulated gene and isoform co-expression networks capturing unique genetic enrichments across disorders. Together, this work provides a comprehensive view of genetic regulation across human brain development as well as the stage-and cell type-informed mechanistic underpinnings of neuropsychiatric disorders.

16.
Epigenetics ; 17(10): 1110-1127, 2022 10.
Article in English | MEDLINE | ID: mdl-34652256

ABSTRACT

DNA methylation (DNAm) that occurs on promoter regions is primarily considered to repress gene expression. Previous studies indicated that DNAm could also show positive correlations with gene expression. Both DNAm and gene expression profiles are known to be tissue- and development-specific. This study aims to investigate how DNAm and gene expression are coordinated across different human tissues and developmental stages, as well as the biological significance of such correlations. By analyzing 2,239 samples with both DNAm and gene expression data in the same human subjects obtained from six published datasets, we evaluated the correlations between gene and CpG pairs (GCPs) at cis-regions and compared significantly correlated GCPs (cGCPs) across different tissues and brains at different age groups. A total of 37,363 cGCPs was identified in the six datasets; approximately 38% of the cGCPs were positively correlated. The majority (>90%) of cGCPs was tissue- or development-specific. We also observed that the correlation direction can be opposite in different tissues and ages. Further analysis highlights the importance of cGCPs for their cellular functions and potential roles in complex traits and human diseases. For instance, the early developmental brain possessed a highly unique set of cGCPs that were associated with neurogenesis and psychiatric disorders. By assessing the epigenetic factors involved in cGCPs, we discovered novel regulatory mechanisms of positive cGCPs distinct from negative cGCPs, which were related to multiple factors, such as H3K27me3, CTCF, and JARD2. The catalogue of cGCPs compiled can be used to guide functional interpretation of genetic and epigenetic studies.


Subject(s)
DNA Methylation , Histones , Brain , CpG Islands , Epigenesis, Genetic , Epigenomics , Gene Expression , Humans
17.
Front Neurosci ; 16: 858989, 2022.
Article in English | MEDLINE | ID: mdl-35844224

ABSTRACT

Approximately 40% of people with schizophrenia are classified as having "high inflammation." This subgroup has worse neuropathology than patients with "low inflammation." Thus, one would expect the resident microglia and possibly monocyte-derived macrophages infiltrating from the periphery to be "activated" in those with schizophrenia with elevated neuroinflammation. To test whether microglia and/or macrophages are associated with increased inflammatory signaling in schizophrenia, we measured microglia- and macrophage-associated transcripts in the postmortem dorsolateral prefrontal cortex of 69 controls and 72 people with schizophrenia. Both groups were stratified by neuroinflammatory status based on cortical mRNA levels of cytokines and SERPINA3. We found microglial mRNAs levels were either unchanged (IBA1 and Hexb, p > 0.20) or decreased (CD11c, <62% p < 0.001) in high inflammation schizophrenia compared to controls. Conversely, macrophage CD163 mRNA levels were increased in patients, substantially so in the high inflammation schizophrenia subgroup compared to low inflammation subgroup (>250%, p < 0.0001). In contrast, high inflammation controls did not have elevated CD163 mRNA compared to low inflammation controls (p > 0.05). The pro-inflammatory macrophage marker (CD64 mRNA) was elevated (>160%, all p < 0.05) and more related to CD163 mRNA in the high inflammation schizophrenia subgroup compared to high inflammation controls, while anti-inflammatory macrophage and cytokine markers (CD206 and IL-10 mRNAs) were either unchanged or decreased in schizophrenia. Finally, macrophage recruitment chemokine CCL2 mRNA was increased in schizophrenia (>200%, p < 0.0001) and CCL2 mRNA levels positively correlated with CD163 mRNA (r = 0.46, p < 0.0001). Collectively, our findings support the co-existence of quiescent microglia and increased pro-inflammatory macrophages in the cortex of people with schizophrenia.

18.
Front Neurosci ; 15: 614142, 2021.
Article in English | MEDLINE | ID: mdl-33841074

ABSTRACT

Agonal factors, the conditions that occur just prior to death, can impact the molecular quality of postmortem brains, influencing gene expression results. Our study used gene expression data of 262 samples from ROSMAP with the detailed terminal state recorded for each donor, such as fever, infection, and unconsciousness. Fever and infection were the primary contributors to brain gene expression changes, brain cell-type-specific gene expression, and cell proportion changes. Furthermore, we also found that previous studies of gene expression in postmortem brains were confounded by agonal factors. Therefore, correction for agonal factors is important in the step of data preprocessing. Our analyses revealed fever and infection contributing to gene expression changes in postmortem brains and emphasized the necessity of study designs that document and account for agonal factors.

19.
Genomics Proteomics Bioinformatics ; 17(4): 402-414, 2019 08.
Article in English | MEDLINE | ID: mdl-31811942

ABSTRACT

Neuropsychiatric disorders affect hundreds of millions of patients and families worldwide. To decode the molecular framework of these diseases, many studies use human postmortem brain samples. These studies reveal brain-specific genetic and epigenetic patterns via high-throughput sequencing technologies. Identifying best practices for the collection of postmortem brain samples, analyzing such large amounts of sequencing data, and interpreting these results are critical to advance neuropsychiatry. We provide an overview of human brain banks worldwide, including progress in China, highlighting some well-known projects using human postmortem brain samples to understand molecular regulation in both normal brains and those with neuropsychiatric disorders. Finally, we discuss future research strategies, as well as state-of-the-art statistical and experimental methods that are drawn upon brain bank resources to improve our understanding of the agents of neuropsychiatric disorders.


Subject(s)
Brain/physiology , Mental Disorders/genetics , Mental Disorders/physiopathology , Tissue Banks/trends , China , High-Throughput Nucleotide Sequencing/methods , Humans
20.
Epigenomics ; 10(5): 643-659, 2018 05.
Article in English | MEDLINE | ID: mdl-29469594

ABSTRACT

AIM: We aimed to prove the existence of positional effects in the Illumina methylation beadchip data and to find an optimal correction method. MATERIALS & METHODS: Three HumanMethylation450, three HumanMethylation27 datasets and two EPIC datasets were analyzed. ComBat, linear regression, functional normalization and single-sample Noob were used for minimizing positional effects. The corrected results were evaluated by four methods. RESULTS: We detected 52,988 CpG loci significantly associated with sample positions, 112 remained after ComBat correction in the primary dataset. The pre- and postcorrection comparisons indicate the positional effects could alter the measured methylation values and downstream analysis results. CONCLUSION: Positional effects exist in the Illumina methylation array and may bias the analyses. Using ComBat to correct positional effects is recommended.


Subject(s)
CpG Islands/genetics , DNA Methylation , Genome, Human , Oligonucleotide Array Sequence Analysis/methods , Bias , Humans
SELECTION OF CITATIONS
SEARCH DETAIL