Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Mol Med ; 30(1): 51, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632526

ABSTRACT

BACKGROUND: The Multi-System Inflammatory Syndrome in Children (MIS-C) can develop several weeks after SARS-CoV-2 infection and requires a distinct treatment protocol. Distinguishing MIS-C from SARS-CoV-2 negative sepsis (SCNS) patients is important to quickly institute the correct therapies. We performed targeted proteomics and machine learning analysis to identify novel plasma proteins of MIS-C for early disease recognition. METHODS: A case-control study comparing the expression of 2,870 unique blood proteins in MIS-C versus SCNS patients, measured using proximity extension assays. The 2,870 proteins were reduced in number with either feature selection alone or with a prior COMBAT-Seq batch effect adjustment. The leading proteins were correlated with demographic and clinical variables. Organ system and cell type expression patterns were analyzed with Natural Language Processing (NLP). RESULTS: The cohorts were well-balanced for age and sex. Of the 2,870 unique blood proteins, 58 proteins were identified with feature selection (FDR-adjusted P < 0.005, P < 0.0001; accuracy = 0.96, AUC = 1.00, F1 = 0.95), and 15 proteins were identified with a COMBAT-Seq batch effect adjusted feature selection (FDR-adjusted P < 0.05, P < 0.0001; accuracy = 0.92, AUC = 1.00, F1 = 0.89). All of the latter 15 proteins were present in the former 58-protein model. Several proteins were correlated with illness severity scores, length of stay, and interventions (LTA4H, PTN, PPBP, and EGF; P < 0.001). NLP analysis highlighted the multi-system nature of MIS-C, with the 58-protein set expressed in all organ systems; the highest levels of expression were found in the digestive system. The cell types most involved included leukocytes not yet determined, lymphocytes, macrophages, and platelets. CONCLUSIONS: The plasma proteome of MIS-C patients was distinct from that of SCNS. The key proteins demonstrated expression in all organ systems and most cell types. The unique proteomic signature identified in MIS-C patients could aid future diagnostic and therapeutic advancements, as well as predict hospital length of stays, interventions, and mortality risks.


Subject(s)
COVID-19/complications , Sepsis , Child , Humans , Proteome , SARS-CoV-2 , Case-Control Studies , Proteomics , Systemic Inflammatory Response Syndrome , Blood Proteins
2.
Clin Proteomics ; 21(1): 33, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760690

ABSTRACT

BACKGROUND: COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS: A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS: Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS: The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.

3.
Mol Med ; 29(1): 26, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36809921

ABSTRACT

BACKGROUND: Survivors of acute COVID-19 often suffer prolonged, diffuse symptoms post-infection, referred to as "Long-COVID". A lack of Long-COVID biomarkers and pathophysiological mechanisms limits effective diagnosis, treatment and disease surveillance. We performed targeted proteomics and machine learning analyses to identify novel blood biomarkers of Long-COVID. METHODS: A case-control study comparing the expression of 2925 unique blood proteins in Long-COVID outpatients versus COVID-19 inpatients and healthy control subjects. Targeted proteomics was accomplished with proximity extension assays, and machine learning was used to identify the most important proteins for identifying Long-COVID patients. Organ system and cell type expression patterns were identified with Natural Language Processing (NLP) of the UniProt Knowledgebase. RESULTS: Machine learning analysis identified 119 relevant proteins for differentiating Long-COVID outpatients (Bonferonni corrected P < 0.01). Protein combinations were narrowed down to two optimal models, with nine and five proteins each, and with both having excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, F1 = 1.00). NLP expression analysis highlighted the diffuse organ system involvement in Long-COVID, as well as the involved cell types, including leukocytes and platelets, as key components associated with Long-COVID. CONCLUSIONS: Proteomic analysis of plasma from Long-COVID patients identified 119 highly relevant proteins and two optimal models with nine and five proteins, respectively. The identified proteins reflected widespread organ and cell type expression. Optimal protein models, as well as individual proteins, hold the potential for accurate diagnosis of Long-COVID and targeted therapeutics.


Subject(s)
COVID-19 , Humans , Proteomics , Case-Control Studies , Machine Learning , Post-Acute COVID-19 Syndrome , Biomarkers
4.
Mol Med ; 28(1): 122, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36217108

ABSTRACT

BACKGROUND: Long-COVID is characterized by prolonged, diffuse symptoms months after acute COVID-19. Accurate diagnosis and targeted therapies for Long-COVID are lacking. We investigated vascular transformation biomarkers in Long-COVID patients. METHODS: A case-control study utilizing Long-COVID patients, one to six months (median 98.5 days) post-infection, with multiplex immunoassay measurement of sixteen blood biomarkers of vascular transformation, including ANG-1, P-SEL, MMP-1, VE-Cad, Syn-1, Endoglin, PECAM-1, VEGF-A, ICAM-1, VLA-4, E-SEL, thrombomodulin, VEGF-R2, VEGF-R3, VCAM-1 and VEGF-D. RESULTS: Fourteen vasculature transformation blood biomarkers were significantly elevated in Long-COVID outpatients, versus acutely ill COVID-19 inpatients and healthy controls subjects (P < 0.05). A unique two biomarker profile consisting of ANG-1/P-SEL was developed with machine learning, providing a classification accuracy for Long-COVID status of 96%. Individually, ANG-1 and P-SEL had excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, P < 0.0001; validated in a secondary cohort). Specific to Long-COVID, ANG-1 levels were associated with female sex and a lack of disease interventions at follow-up (P < 0.05). CONCLUSIONS: Long-COVID patients suffer prolonged, diffuse symptoms and poorer health. Vascular transformation blood biomarkers were significantly elevated in Long-COVID, with angiogenesis markers (ANG-1/P-SEL) providing classification accuracy of 96%. Vascular transformation blood biomarkers hold potential for diagnostics, and modulators of angiogenesis may have therapeutic efficacy.


Subject(s)
Biomarkers , COVID-19 , Biomarkers/blood , COVID-19/complications , Case-Control Studies , Endoglin , Female , Humans , Integrin alpha4beta1 , Intercellular Adhesion Molecule-1 , Matrix Metalloproteinase 1 , Neovascularization, Pathologic , Platelet Endothelial Cell Adhesion Molecule-1 , Thrombomodulin , Vascular Cell Adhesion Molecule-1 , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor D , Post-Acute COVID-19 Syndrome
5.
Clin Proteomics ; 19(1): 50, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36572854

ABSTRACT

BACKGROUND: Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients. METHODS: Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with machine learning and then correlated with relevant clinical and laboratory variables. RESULTS: The median age for critically ill sepsis patients was 56 (IQR 51-61) years. The median MODS and SOFA values were 7 (IQR 5.0-8.0) and 7 (IQR 5.0-9.0) on ICU Day-1, and 4 (IQR 3.5-7.0) and 6 (IQR 3.5-7.0) on ICU Day-3, respectively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05). CONCLUSIONS: Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-driven sepsis research.

6.
Clin Chem Lab Med ; 59(10): 1662-1669, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34144643

ABSTRACT

OBJECTIVES: Severe traumatic brain injury (sTBI) patients suffer high mortality. Accurate prognostic biomarkers have not been identified. In this exploratory study, we performed targeted proteomics on plasma obtained from sTBI patients to identify potential outcome biomarkers. METHODS: Blood sample was collected from patients admitted to the ICU suffering a sTBI, using standardized clinical and computerized tomography (CT) imaging criteria. Age- and sex-matched healthy control subjects and sTBI patients were enrolled. Targeted proteomics was performed on plasma with proximity extension assays (1,161 proteins). RESULTS: Cohorts were well-balanced for age and sex. The majority of sTBI patients were injured in motor vehicle collisions and the most frequent head CT finding was subarachnoid hemorrhage. Mortality rate for sTBI patients was 40%. Feature selection identified the top performing 15 proteins for identifying sTBI patients from healthy control subjects with a classification accuracy of 100%. The sTBI proteome was dominated by markers of vascular pathology, immunity/inflammation, cell survival and macrophage/microglia activation. Receiver operating characteristic (ROC) curve analyses demonstrated areas-under-the-curves (AUC) for identifying sTBI that ranged from 0.870-1.000 (p≤0.005). When mortality was used as outcome, ROC curve analyses identified the top 3 proteins as Willebrand factor (vWF), Wnt inhibitory factor-1 (WIF-1), and colony stimulating factor-1 (CSF-1). Combining vWF with either WIF-1 or CSF-1 resulted in excellent mortality prediction with AUC of 1.000 for both combinations (p=0.011). CONCLUSIONS: Targeted proteomics with feature classification and selection distinguished sTBI patients from matched healthy control subjects. Two protein combinations were identified that accurately predicted sTBI patient mortality. Our exploratory findings require confirmation in larger sTBI patient populations.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Biomarkers , Brain Injuries, Traumatic/diagnosis , Humans , Prognosis , Tomography, X-Ray Computed
7.
BMC Public Health ; 21(1): 40, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407254

ABSTRACT

BACKGROUND: Our objective was to determine the impacts of artificial intelligence (AI) on public health practice. METHODS: We used a fundamental qualitative descriptive study design, enrolling 15 experts in public health and AI from June 2018 until July 2019 who worked in North America and Asia. We conducted in-depth semi-structured interviews, iteratively coded the resulting transcripts, and analyzed the results thematically. RESULTS: We developed 137 codes, from which nine themes emerged. The themes included opportunities such as leveraging big data and improving interventions; barriers to adoption such as confusion regarding AI's applicability, limited capacity, and poor data quality; and risks such as propagation of bias, exacerbation of inequity, hype, and poor regulation. CONCLUSIONS: Experts are cautiously optimistic about AI's impacts on public health practice, particularly for improving disease surveillance. However, they perceived substantial barriers, such as a lack of available expertise, and risks, including inadequate regulation. Therefore, investment and research into AI for public health practice would likely be beneficial. However, increased access to high-quality data, research and education regarding the limitations of AI, and development of rigorous regulation are necessary to realize these benefits.


Subject(s)
Artificial Intelligence , Public Health , Asia , Big Data , Humans , North America
8.
Biochem Biophys Res Commun ; 530(1): 240-245, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32828293

ABSTRACT

Historically, the field of tissue engineering has been adept at modulating the chemical and physical microenvironment. This approach has yielded significant progress, but it is imperative to further integrate our understanding of other fundamental cell signaling paradigms into tissue engineering methods. Bioelectric signaling has been demonstrated to be a vital part of tissue development, regeneration, and function across organ systems and the extracellular matrix is known to alter the bioelectric properties of cells. Thus, there is a need to bolster our understanding of how matrix and bioelectric signals interact to drive cell phenotype. We examine how cardiac progenitor cell differentiation is altered by simultaneous changes in both resting membrane potential and extracellular matrix composition. Pediatric c-kit+ cardiac progenitor cells were differentiated on fetal or adult cardiac extracellular matrix while being treated with drugs that alter resting membrane potential. Smooth muscle gene expression was increased with depolarization and decreased with hyperpolarization while endothelial and cardiac expression were unchanged. Early smooth muscle protein expression is modified by matrix developmental age, with fetal ECM appearing to amplify the effects of resting membrane potential. Thus, combining matrix composition and bioelectric signaling represents a potential alternative for guiding cell behavior in tissue engineering and regenerative medicine.


Subject(s)
Cell Differentiation , Extracellular Matrix/chemistry , Myocytes, Cardiac/cytology , Myocytes, Smooth Muscle/cytology , Stem Cells/cytology , Animals , Cell Differentiation/drug effects , Cells, Cultured , Extracellular Matrix/drug effects , Humans , Membrane Potentials/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Smooth Muscle/drug effects , Stem Cells/drug effects , Swine , Tissue Engineering/methods , Tissue Scaffolds/chemistry
9.
Clin J Sport Med ; 30(5): e147-e149, 2020 09.
Article in English | MEDLINE | ID: mdl-30969186

ABSTRACT

OBJECTIVE: To assess the predictive capability of the postconcussion symptom scale (PCSS) of the sport concussion assessment tool (SCAT) III to differentiate concussed and nonconcussed adolescents. DESIGN: Retrospective. SETTING: Tertiary. PARTICIPANTS: Sixty-nine concussed (15.2 ± 1.6 years old) and 55 control (14.4 ± 1.7 years old) adolescents. INDEPENDENT VARIABLES: Postconcussion symptom scale. MAIN OUTCOME MEASURE: Two-proportion z-test determined differences in symptom endorsement between groups. To assess the predictive power of the PCSS, we trained an ensemble classifier composed of a forest of 1000 decision trees to classify subjects as concussed, or not concussed, based on PCSS responses. The initial classifier was trained on all 22-concussion symptoms addressed in the PCSS, whereas the second classifier removed concussion symptoms that were not statistically significant between groups. RESULTS: Concussion symptoms common between groups were trouble falling asleep, more emotional, irritability, sadness, and anxious. After removal, analysis of the second classifier indicated that the 5 leading feature rankings of symptoms were headache, head pressure, light sensitivity, noise sensitivity, and "don't feel right," which accounted for 52% of the variance between groups. CONCLUSIONS: Collectively, self-reported symptoms through the PCSS can differentiate concussed and nonconcussed adolescents. However, predictability for adolescent patients may be improved by removing emotional and sleep domain symptoms.


Subject(s)
Athletic Injuries/diagnosis , Post-Concussion Syndrome/diagnosis , Symptom Assessment/methods , Adolescent , Affective Symptoms/diagnosis , Anxiety/diagnosis , Child , Decision Trees , Female , Humans , Irritable Mood , Male , Outcome Assessment, Health Care , Post-Concussion Syndrome/complications , Predictive Value of Tests , Retrospective Studies , Sadness , Self Report , Sleep Initiation and Maintenance Disorders/diagnosis , Youth Sports
10.
Adv Exp Med Biol ; 1098: 59-83, 2018.
Article in English | MEDLINE | ID: mdl-30238366

ABSTRACT

The role of the cardiac extracellular matrix (cECM) in providing biophysical and biochemical cues to the cells housed within during disease and development has become increasingly apparent. These signals have been shown to influence many fundamental cardiac cell behaviors including contractility, proliferation, migration, and differentiation. Consequently, alterations to cell phenotype result in directed remodeling of the cECM. This bidirectional communication means that the cECM can be envisioned as a medium for information storage. As a result, the reprogramming of the cECM is increasingly being employed in tissue engineering and regenerative medicine as a method with which to treat disease. In this chapter, an overview of the composition and structure of the cECM as well as its role in cardiac development and disease will be provided. Additionally, therapeutic modulation of cECM for cardiac regeneration as well as bottom-up and top-down approaches to ECM-based cardiac tissue engineering is discussed. Finally, lingering questions regarding the role of cECM in tissue engineering and regenerative medicine are offered as a catalyst for future research.


Subject(s)
Extracellular Matrix , Regenerative Medicine/methods , Tissue Engineering/methods , Animals , Atrial Remodeling , Extracellular Matrix/ultrastructure , Extracellular Matrix Proteins/physiology , Humans , Myocytes, Cardiac/physiology , Myocytes, Cardiac/ultrastructure , Printing, Three-Dimensional , Tissue Scaffolds , Ventricular Remodeling
11.
BMC Genomics ; 16: 497, 2015 Jul 04.
Article in English | MEDLINE | ID: mdl-26141061

ABSTRACT

BACKGROUND: Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously. RESULTS: We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR). CONCLUSION: The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.


Subject(s)
DNA Copy Number Variations/genetics , Genome/genetics , Mice/genetics , Animals , Genetic Variation/genetics , Genomics/methods
12.
Bioinformatics ; 29(2): 262-3, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23129301

ABSTRACT

SUMMARY: Copy number variants (CNVs) are a major source of genetic variation. Comparing CNVs between samples is important in elucidating their potential effects in a wide variety of biological contexts. HD-CNV (hotspot detector for copy number variants) is a tool for downstream analysis of previously identified CNV regions from multiple samples, and it detects recurrent regions by finding cliques in an interval graph generated from the input. It creates a unique graphical representation of the data, as well as summary spreadsheets and UCSC (University of California, Santa Cruz) Genome Browser track files. The interval graph, when viewed with other software or by automated graph analysis, is useful in identifying genomic regions of interest for further study. AVAILABILITY AND IMPLEMENTATION: HD-CNV is an open source Java code and is freely available, with tutorials and sample data from http://daleylab.org. CONTACT: jcamer7@uwo.ca


Subject(s)
DNA Copy Number Variations , Software , Genome, Human , Genomics , Humans , Karyotype
13.
J Inflamm (Lond) ; 21(1): 7, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454423

ABSTRACT

BACKGROUND: Sepsis is a dysregulated systemic inflammatory response triggered by infection, resulting in organ dysfunction. A major challenge in clinical pediatrics is to identify sepsis early and then quickly intervene to reduce morbidity and mortality. As blood biomarkers hold promise as early sepsis diagnostic tools, we aimed to measure a large number of blood inflammatory biomarkers from pediatric sepsis patients to determine their predictive ability, as well as their correlations with clinical variables and illness severity scores. METHODS: Pediatric patients that met sepsis criteria were enrolled, and clinical data and blood samples were collected. Fifty-eight inflammatory plasma biomarker concentrations were determined using immunoassays. The data were analyzed with both conventional statistics and machine learning. RESULTS: Twenty sepsis patients were enrolled (median age 13 years), with infectious pathogens identified in 75%. Vasopressors were administered to 85% of patients, while 55% received invasive ventilation and 20% were ventilated non-invasively. A total of 24 inflammatory biomarkers were significantly different between sepsis patients and age/sex-matched healthy controls. Nine biomarkers (IL-6, IL-8, MCP-1, M-CSF, IL-1RA, hyaluronan, HSP70, MMP3, and MMP10) yielded AUC parameters > 0.9 (95% CIs: 0.837-1.000; p < 0.001). Boruta feature reduction yielded 6 critical biomarkers with their relative importance: IL-8 (12.2%), MCP-1 (11.6%), HSP70 (11.6%), hyaluronan (11.5%), M-CSF (11.5%), and IL-6 (11.5%); combinations of 2 biomarkers yielded AUC values of 1.00 (95% CI: 1.00-1.00; p < 0.001). Specific biomarkers strongly correlated with illness severity scoring, as well as other clinical variables. IL-3 specifically distinguished bacterial versus viral infection (p < 0.005). CONCLUSIONS: Specific inflammatory biomarkers were identified as markers of pediatric sepsis and strongly correlated to both clinical variables and sepsis severity.

14.
Front Cell Dev Biol ; 12: 1279932, 2024.
Article in English | MEDLINE | ID: mdl-38434619

ABSTRACT

Heart failure afflicts an estimated 6.5 million people in the United States, driven largely by incidents of coronary heart disease (CHD). CHD leads to heart failure due to the inability of adult myocardial tissue to regenerate after myocardial infarction (MI). Instead, immune cells and resident cardiac fibroblasts (CFs), the cells responsible for the maintenance of the cardiac extracellular matrix (cECM), drive an inflammatory wound healing response, which leads to fibrotic scar tissue. However, fibrosis is reduced in fetal and early (<1-week-old) neonatal mammals, which exhibit a transient capability for regenerative tissue remodeling. Recent work by our laboratory and others suggests this is in part due to compositional differences in the cECM and functional differences in CFs with respect to developmental age. Specifically, fetal cECM and CFs appear to mitigate functional loss in MI models and engineered cardiac tissues, compared to adult CFs and cECM. We conducted 2D studies of CFs on solubilized fetal and adult cECM to investigate whether these age-specific functional differences are synergistic with respect to their impact on CF phenotype and, therefore, cardiac wound healing. We found that the CF migration rate and stiffness vary with respect to cell and cECM developmental age and that CF transition to a fibrotic phenotype can be partially attenuated in the fetal cECM. However, this effect was not observed when cells were treated with cytokine TGF-ß1, suggesting that inflammatory signaling factors are the dominant driver of the fibroblast phenotype. This information may be valuable for targeted therapies aimed at modifying the CF wound healing response and is broadly applicable to age-related studies of cardiac remodeling.

15.
ALTEX ; 40(1): 103-116, 2023.
Article in English | MEDLINE | ID: mdl-35648122

ABSTRACT

Environmental factors play a substantial role in determining cardiovascular health, but data informing the risks presented by environmental toxicants is insufficient. In vitro new approach methodologies (NAMs) offer a promising approach with which to address the limitations of traditional in vivo and in vitro assays for assessing cardiotoxicity. Driven largely by the needs of pharmaceutical toxicity testing, considerable progress in developing NAMs for cardiotoxicity analysis has already been made. As the scientific and regulatory interest in NAMs for environmental chemicals continues to grow, a thorough understanding of the unique features of environmental cardiotoxicants and their associated cardiotoxicities is needed. Here, we review the key characteristics of as well as important regulatory and biological considerations for fit-for-purpose NAMs for environmental cardiotoxicity. By emphasizing the challenges and opportunities presented by NAMs for environmental cardiotoxicity we hope to accelerate their development, acceptance, and application.


Subject(s)
Cardiotoxicity , Induced Pluripotent Stem Cells , Humans , Toxicity Tests/methods , Myocytes, Cardiac , Pharmaceutical Preparations
16.
PLoS One ; 18(2): e0280406, 2023.
Article in English | MEDLINE | ID: mdl-36745602

ABSTRACT

Recent advances in human induced pluripotent stem cell (hiPSC)-derived cardiac microtissues provide a unique opportunity for cardiotoxic assessment of pharmaceutical and environmental compounds. Here, we developed a series of automated data processing algorithms to assess changes in action potential (AP) properties for cardiotoxicity testing in 3D engineered cardiac microtissues generated from hiPSC-derived cardiomyocytes (hiPSC-CMs). Purified hiPSC-CMs were mixed with 5-25% human cardiac fibroblasts (hCFs) under scaffold-free conditions and allowed to self-assemble into 3D spherical microtissues in 35-microwell agarose gels. Optical mapping was performed to quantify electrophysiological changes. To increase throughput, AP traces from 4x4 cardiac microtissues were simultaneously acquired with a voltage sensitive dye and a CMOS camera. Individual microtissues showing APs were identified using automated thresholding after Fourier transforming traces. An asymmetric least squares method was used to correct non-uniform background and baseline drift, and the fluorescence was normalized (ΔF/F0). Bilateral filtering was applied to preserve the sharpness of the AP upstroke. AP shape changes under selective ion channel block were characterized using AP metrics including stimulation delay, rise time of AP upstroke, APD30, APD50, APD80, APDmxr (maximum rate change of repolarization), and AP triangulation (APDtri = APDmxr-APD50). We also characterized changes in AP metrics under various ion channel block conditions with multi-class logistic regression and feature extraction using principal component analysis of human AP computer simulations. Simulation results were validated experimentally with selective pharmacological ion channel blockers. In conclusion, this simple and robust automated data analysis pipeline for evaluating key AP metrics provides an excellent in vitro cardiotoxicity testing platform for a wide range of environmental and pharmaceutical compounds.


Subject(s)
Action Potentials , Cardiotoxicity , Induced Pluripotent Stem Cells , Humans , Action Potentials/physiology , Induced Pluripotent Stem Cells/physiology , Ion Channels , Myocytes, Cardiac/physiology
17.
Sci Rep ; 13(1): 21210, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040779

ABSTRACT

Acute and chronic kidney disease continues to confer significant morbidity and mortality in the clinical setting. Despite high prevalence of these conditions, few validated biomarkers exist to predict kidney dysfunction. In this study, we utilized a novel kidney multiplex panel to measure 21 proteins in plasma and urine to characterize the spectrum of biomarker profiles in kidney disease. Blood and urine samples were obtained from age-/sex-matched healthy control subjects (HC), critically-ill COVID-19 patients with acute kidney injury (AKI), and patients with chronic or end-stage kidney disease (CKD/ESKD). Biomarkers were measured with a kidney multiplex panel, and results analyzed with conventional statistics and machine learning. Correlations were examined between biomarkers and patient clinical and laboratory variables. Median AKI subject age was 65.5 (IQR 58.5-73.0) and median CKD/ESKD age was 65.0 (IQR 50.0-71.5). Of the CKD/ESKD patients, 76.1% were on hemodialysis, 14.3% of patients had kidney transplant, and 9.5% had CKD without kidney replacement therapy. In plasma, 19 proteins were significantly different in titer between the HC versus AKI versus CKD/ESKD groups, while NAG and RBP4 were unchanged. TIMP-1 (PPV 1.0, NPV 1.0), best distinguished AKI from HC, and TFF3 (PPV 0.99, NPV 0.89) best distinguished CKD/ESKD from HC. In urine, 18 proteins were significantly different between groups except Calbindin, Osteopontin and TIMP-1. Osteoactivin (PPV 0.95, NPV 0.95) best distinguished AKI from HC, and ß2-microglobulin (PPV 0.96, NPV 0.78) best distinguished CKD/ESKD from HC. A variety of correlations were noted between patient variables and either plasma or urine biomarkers. Using a novel kidney multiplex biomarker panel, together with conventional statistics and machine learning, we identified unique biomarker profiles in the plasma and urine of patients with AKI and CKD/ESKD. We demonstrated correlations between biomarker profiles and patient clinical variables. Our exploratory study provides biomarker data for future hypothesis driven research on kidney disease.


Subject(s)
Acute Kidney Injury , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Tissue Inhibitor of Metalloproteinase-1 , Kidney Failure, Chronic/therapy , Biomarkers , Retinol-Binding Proteins, Plasma
18.
Bioengineering (Basel) ; 10(5)2023 May 13.
Article in English | MEDLINE | ID: mdl-37237658

ABSTRACT

Despite the overwhelming use of cellularized therapeutics in cardiac regenerative engineering, approaches to biomanufacture engineered cardiac tissues (ECTs) at clinical scale remain limited. This study aims to evaluate the impact of critical biomanufacturing decisions-namely cell dose, hydrogel composition, and size-on ECT formation and function-through the lens of clinical translation. ECTs were fabricated by mixing human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) and human cardiac fibroblasts into a collagen hydrogel to engineer meso-(3 × 9 mm), macro- (8 × 12 mm), and mega-ECTs (65 × 75 mm). Meso-ECTs exhibited a hiPSC-CM dose-dependent response in structure and mechanics, with high-density ECTs displaying reduced elastic modulus, collagen organization, prestrain development, and active stress generation. Scaling up, cell-dense macro-ECTs were able to follow point stimulation pacing without arrhythmogenesis. Finally, we successfully fabricated a mega-ECT at clinical scale containing 1 billion hiPSC-CMs for implantation in a swine model of chronic myocardial ischemia to demonstrate the technical feasibility of biomanufacturing, surgical implantation, and engraftment. Through this iterative process, we define the impact of manufacturing variables on ECT formation and function as well as identify challenges that must still be overcome to successfully accelerate ECT clinical translation.

19.
Heliyon ; 9(1): e12704, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36594041

ABSTRACT

Critically ill patients infected with SARS-CoV-2 display adaptive immunity, but it is unknown if they develop cross-reactivity to variants of concern (VOCs). We profiled cross-immunity against SARS-CoV-2 VOCs in naturally infected, non-vaccinated, critically ill COVID-19 patients. Wave-1 patients (wild-type infection) were similar in demographics to Wave-3 patients (wild-type/alpha infection), but Wave-3 patients had higher illness severity. Wave-1 patients developed increasing neutralizing antibodies to all variants, as did patients during Wave-3. Wave-3 patients, when compared to Wave-1, developed more robust antibody responses, particularly for wild-type, alpha, beta and delta variants. Within Wave-3, neutralizing antibodies were significantly less to beta and gamma VOCs, as compared to wild-type, alpha and delta. Patients previously diagnosed with cancer or chronic obstructive pulmonary disease had significantly fewer neutralizing antibodies. Naturally infected ICU patients developed adaptive responses to all VOCs, with greater responses in those patients more likely to be infected with the alpha variant, versus wild-type.

20.
Injury ; 53(3): 992-998, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35034778

ABSTRACT

INTRODUCTION: Severe traumatic brain injury (sTBI) is a leading cause of mortality in children. As clinical prognostication is important in guiding optimal care and decision making, our goal was to create a highly discriminative sTBI outcome prediction model for mortality. METHODS: Machine learning and advanced analytics were applied to the patient admission variables obtained from a comprehensive pediatric sTBI database. Demographic and clinical data, head CT imaging abnormalities and blood biochemical data from 196 children and adolescents admitted to a tertiary pediatric intensive care unit (PICU) with sTBI were integrated using feature ranking by way of a forest of randomized decision trees, and a model was generated from a reduced number of admission variables with maximal ability to discriminate outcome. RESULTS: In total, 36 admission variables were analyzed using feature ranking with variable weighting to determine their predictive importance for mortality following sTBI. Reduction analysis utilizing Borata feature selection resulted in a parsimonious six-variable model with a mortality classification accuracy of 82%. The final admission variables that predicted mortality were: partial thromboplastin time (22%); motor Glasgow Coma Scale (21%); serum glucose (16%); fixed pupil(s) (16%); platelet count (13%) and creatinine (12%). Using only these six admission variables, a t-distributed stochastic nearest neighbor embedding algorithm plot demonstrated visual separation of sTBI patients that lived or died, with high mortality predictive ability of this model on the validation dataset (AUC = 0.90) which was confirmed with a conventional area-under-the-curve statistical approach on the total dataset (AUC = 0.91; P < 0.001). CONCLUSIONS: Machine learning-based modeling identified the most clinically important prognostic factors resulting in a pragmatic, high performing prognostic tool for pediatric sTBI with excellent discriminative ability to predict mortality risk with 82% classification accuracy (AUC = 0.90). After external multicenter validation, our prognostic model might help to guide treatment decisions, aggressiveness of therapy and prepare family members and caregivers for timely end-of-life discussions and decision making. LEVEL OF EVIDENCE: III; Prognostic.


Subject(s)
Brain Injuries, Traumatic , Adolescent , Brain Injuries, Traumatic/therapy , Child , Glasgow Coma Scale , Humans , Machine Learning , Prognosis , Retrospective Studies , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL