Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Molecules ; 25(16)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823787

ABSTRACT

Stauntonia hexaphylla (Lardizabalaceae) has been used as a traditional herbal medicine in Korea and China for its anti-inflammatory and analgesic properties. As part of a bioprospecting program aimed at the discovery of new bioactive compounds from Korean medicinal plants, a phytochemical study of S. hexaphylla leaves was carried out leading to isolation of two oleanane-type triterpene saponins, 3-O-[ß-d-glucopyranosyl (1→2)-α-l-arabinopyranosyl] oleanolic acid-28-O-[ß-d-glucopyranosyl (1→6)-ß-d-glucopyranosyl] ester (1) and 3-O-α-l-arabinopyranosyl oleanolic acid-28-O-[ß-d-glucopyranosyl (1→6)-ß-d-glucopyranosyl] ester (2). Their structures were established unambiguously by spectroscopic methods such as one- and two-dimensional nuclear magnetic resonance and infrared spectroscopies, high-resolution electrospray ionization mass spectrometry and chemical reactions. Their anti-inflammatory activities were examined for the first time with an animal model for the macrophage-mediated inflammatory response as well as a cell-based assay using an established macrophage cell line (RAW 264.7) in vitro. Together, it was concluded that the saponin constituents, when they were orally administered, exerted much more potent activities in vivo than their sapogenin core even though both the saponins and the sapogenin molecule inhibited the RAW 264.7 cell activation comparably well in vitro. These results imply that saponins from S. hexaphylla leaves have a definite advantage in the development of oral medications for the control of inflammatory responses.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Ranunculales/chemistry , Animals , Glycosylation , Mice , Nitric Oxide/metabolism , RAW 264.7 Cells , Saponins/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 29(16): 2085-2089, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31301930

ABSTRACT

Chromatography of the ethanol extract of the medicinal fruit Stauntonia hexaphylla resulted in the purification of 26 compounds (1-26), including two undescribed triterpene saponins 1 and 2 (hexaphylosides A and B). Their structures were confirmed by spectroscopic data, including IR, HR QTOF MS, 1H, 13C NMR, COSY, HMQC, HMBC, and TOCSY, and HPLC sugar analysis after acid hydrolysis. The anti-inflammatory effects of the high-purity constituents (1-26) on lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells were investigated by screening nitric oxide production. The NO inhibitory activity of compounds 6 and 10 with the IC50 values of 1.33 and 1.10 µM, respectively. The structure-activity relationships (SAR) of the isolated compounds were also analyzed. Furthermore, compounds 6 and 10 inhibited the protein expression inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 via Western blotting analysis. This showed that compounds 6 and 10 contributed to the anti-inflammatory effects of S. hexaphylla fruit, which could be developed as a natural nutraceutical and functional food ingredient.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Saponins/pharmacology , Triterpenes/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/isolation & purification , Cyclooxygenase 2 Inhibitors/pharmacology , Fruit/chemistry , Mice , Molecular Structure , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , RAW 264.7 Cells , Ranunculales/chemistry , Saponins/chemistry , Saponins/isolation & purification , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification
3.
Medicine (Baltimore) ; 101(27): e29291, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35801753

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) can lead to systemic inflammatory responses and other cardiovascular disease. Diffusion tensor imaging findings generated by gadolinium-based MRI (DTI-GBMRI) is regarded as a standard method for assessing the pathology of CKD. To evaluate the diagnostic value of DTI-GBMRI for renal histopathology and renal efficiency, renal fibrosis and damage, noninvasive quantification of renal blood flow (RBF) were investigated in patients with CKD. METHODS: CKD patients (n = 186) were recruited and underwent diagnosis of renal diffusion tensor imaging findings generated by MRI (DTI-MRI) or DTI-GBMRI to identify the pathological characteristics and depict renal efficiency. The cortical RBFs and estimated glomerular filtration rate were compared in CKD patients undergone DTI-GBMRI (n = 92) or DTI-MRI (n = 94). RESULTS: Gadolinium enhanced the diagnosis generated by DTI-MRI in renal fibrosis, renal damage, and estimated glomerular filtration rate. The superiority in sensitivity and accuracy of the DTI-GBMRI method in assessing renal function and evaluating renal impairment was observed in CKD patients compared with DTI-MRI. Outcomes demonstrated that DTI-GBMRI had higher accuracy, sensitivity, and specificity than DTI-MRI in diagnosing patients with CKD. CONCLUSION: In conclusion, DTI-GBMRI is a potential noninvasive method for measuring renal function, which can provide valuable information for clinical CKD diagnosis.


Subject(s)
Diffusion Tensor Imaging , Renal Insufficiency, Chronic , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging/methods , Fibrosis , Gadolinium , Humans , Kidney/pathology , Magnetic Resonance Imaging/methods
4.
Bioengineered ; 7(5): 342-351, 2016 Sep 02.
Article in English | MEDLINE | ID: mdl-27710432

ABSTRACT

58s bioactive glass shows great potential for bone defects repair. However, at early repairing stage, the degradation rate of 58s glass is too fast due to the fast ion-exchange. At later repairing stage, the degradation rate of 58s glass is too slow due to the high dense mineral layer. In this work, Zinc oxide (ZnO) and ß-tricalcium phosphate (ß-TCP) were introduced into 58s glass bone scaffolds to improve the degradability. The results showed that ZnO could decrease the degradation rate and promote the stability of 58s glass at early repairing stage. Moreover, the presence of ß-TCP appeared to increase the degradation rate at a later stage of repairing. Furthermore, in vitro biocompatibility study, carried out using human osteoblast-like cells (MG63), demonstrated that ZnO and ß-TCP enhanced cell attachment and proliferation. The study provided a reference for further research in bone tissue engineering.


Subject(s)
Calcium Phosphates/chemistry , Glass/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Zinc Oxide/chemistry , Biocompatible Materials/chemistry , Cell Line , Humans , Osteoblasts/cytology , Osteoblasts/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL