Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34992139

ABSTRACT

Little is known about how dopamine (DA) neuron firing rates behave in cognitively demanding decision-making tasks. Here, we investigated midbrain DA activity in monkeys performing a discrimination task in which the animal had to use working memory (WM) to report which of two sequentially applied vibrotactile stimuli had the higher frequency. We found that perception was altered by an internal bias, likely generated by deterioration of the representation of the first frequency during the WM period. This bias greatly controlled the DA phasic response during the two stimulation periods, confirming that DA reward prediction errors reflected stimulus perception. In contrast, tonic dopamine activity during WM was not affected by the bias and did not encode the stored frequency. More interestingly, both delay-period activity and phasic responses before the second stimulus negatively correlated with reaction times of the animals after the trial start cue and thus represented motivated behavior on a trial-by-trial basis. During WM, this motivation signal underwent a ramp-like increase. At the same time, motivation positively correlated with accuracy, especially in difficult trials, probably by decreasing the effect of the bias. Overall, our results indicate that DA activity, in addition to encoding reward prediction errors, could at the same time be involved in motivation and WM. In particular, the ramping activity during the delay period suggests a possible DA role in stabilizing sustained cortical activity, hypothetically by increasing the gain communicated to prefrontal neurons in a motivation-dependent way.


Subject(s)
Dopamine/pharmacology , Memory, Short-Term/physiology , Motivation/physiology , Reward , Animals , Behavior, Animal/physiology , Dopaminergic Neurons/physiology , Male , Mesencephalon/physiology
2.
Proc Natl Acad Sci U S A ; 119(50): e2214562119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36469775

ABSTRACT

The dorsal premotor cortex (DPC) has classically been associated with a role in preparing and executing the physical motor variables during cognitive tasks. While recent work has provided nuanced insights into this role, here we propose that DPC also participates more actively in decision-making. We recorded neuronal activity in DPC while two trained monkeys performed a vibrotactile categorization task, utilizing two partially overlapping ranges of stimulus values that varied on two physical attributes: vibrotactile frequency and amplitude. We observed a broad heterogeneity across DPC neurons, the majority of which maintained the same response patterns across attributes and ranges, coding in the same periods, mixing temporal and categorical dynamics. The predominant categorical signal was maintained throughout the delay, movement periods and notably during the intertrial period. Putting the entire population's data through two dimensionality reduction techniques, we found strong temporal and categorical representations without remnants of the stimuli's physical parameters. Furthermore, projecting the activity of one population over the population axes of the other yielded identical categorical and temporal responses. Finally, we sought to identify functional subpopulations based on the combined activity of all stimuli, neurons, and time points; however, we found that single-unit responses mixed temporal and categorical dynamics and couldn't be clustered. All these point to DPC playing a more decision-related role than previously anticipated.


Subject(s)
Motor Cortex , Motor Cortex/physiology , Neurons/physiology , Movement/physiology
3.
Int J Cancer ; 141(7): 1434-1444, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28612394

ABSTRACT

Tumor migration/metastasis and immunosuppression are major obstacles in effective cancer therapy. Incidentally, these 2 hurdles usually coexist inside tumors, therefore making therapy significantly more complicated, as both oncogenic mechanisms must be addressed for successful therapeutic intervention. Our recent report highlights that the tumor expression of a TNF family member, CD70, is correlated with poor survival for primary gliomas. In this study, we investigated how CD70 expression by GBM affects the characteristics of tumor cells and the tumor microenvironment. We found that the ablation of CD70 in primary GBM decreased CD44 and SOX2 gene expression, and inhibited tumor migration, growth and the ability to attract monocyte-derived M2 macrophages in vitro. In the tumor microenvironment, CD70 was associated with immune cell infiltrates, such as T cells; myeloid-derived suppressor cells; and monocytes/macrophages based on the RNA-sequencing profile. The CD163+ macrophages were far more abundant than T cells were. This overwhelming level of macrophages was identified only in GBM and not in low-grade gliomas and normal brain specimens, implying their tumor association. CD70 was detected only on tumor cells, not on macrophages, and was highly correlated with CD163 gene expression in primary GBM. Additionally, the co-expression of the CD70 and CD163 genes was found to correlate with decreased survival for patients with primary GBM. Together, these data suggest that CD70 expression is involved in promoting tumor aggressiveness and immunosuppression via tumor-associated macrophage recruitment/activation. Our current efforts to target this molecule using chimeric antigen receptor T cells hold great potential for treating patients with GBM.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , CD27 Ligand/metabolism , Glioblastoma/metabolism , Glioblastoma/secondary , Immune Tolerance , Antigens, CD/analysis , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/analysis , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Brain/cytology , Brain Neoplasms/immunology , CD27 Ligand/analysis , CD27 Ligand/genetics , Cell Line, Tumor , Cell Migration Assays, Macrophage/methods , Cell Movement , Gene Expression Regulation, Neoplastic , Glioblastoma/immunology , Glioblastoma/mortality , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Immunity, Cellular , Macrophages/chemistry , Macrophages/cytology , Macrophages/immunology , Neoplasm Metastasis , Receptors, Cell Surface/analysis , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
4.
Adv Ther (Weinh) ; 6(3)2023 Mar.
Article in English | MEDLINE | ID: mdl-37007587

ABSTRACT

Despite advances by recently approved antibody-drug conjugates in treating advanced gastric cancer patients, substantial limitations remain. Here, several key obstacles are overcome by developing a first-in-class ultrasmall (sub-8-nanometer (nm)) anti-human epidermal growth factor receptor 2 (HER2)-targeting drug-immune conjugate nanoparticle therapy. This multivalent fluorescent core-shell silica nanoparticle bears multiple anti-HER2 single-chain variable fragments (scFv), topoisomerase inhibitors, and deferoxamine moieties. Most surprisingly, drawing upon its favorable physicochemical, pharmacokinetic, clearance, and target-specific dual-modality imaging properties in a "hit and run" approach, this conjugate eradicated HER2-expressing gastric tumors without any evidence of tumor regrowth, while exhibiting a wide therapeutic index. Therapeutic response mechanisms are accompanied by the activation of functional markers, as well as pathway-specific inhibition. Results highlight the potential clinical utility of this molecularly engineered particle drug-immune conjugate and underscore the versatility of the base platform as a carrier for conjugating an array of other immune products and payloads.

5.
Nat Commun ; 12(1): 2000, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790301

ABSTRACT

A crucial role of cortical networks is the conversion of sensory inputs into perception. In the cortical somatosensory network, neurons of the primary somatosensory cortex (S1) show invariant sensory responses, while frontal lobe neuronal activity correlates with the animal's perceptual behavior. Here, we report that in the secondary somatosensory cortex (S2), neurons with invariant sensory responses coexist with neurons whose responses correlate with perceptual behavior. Importantly, the vast majority of the neurons fall along a continuum of combined sensory and categorical dynamics. Furthermore, during a non-demanding control task, the sensory responses remain unaltered while the sensory information exhibits an increase. However, perceptual responses and the associated categorical information decrease, implicating a task context-dependent processing mechanism. Conclusively, S2 neurons exhibit intriguing dynamics that are intermediate between those of S1 and frontal lobe. Our results contribute relevant evidence about the role that S2 plays in the conversion of touch into perception.


Subject(s)
Macaca mulatta/physiology , Neurons/physiology , Sensory Receptor Cells/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Algorithms , Animals , Frontal Lobe/cytology , Frontal Lobe/physiology , Models, Neurological , Physical Stimulation/methods , Somatosensory Cortex/cytology
6.
Front Immunol ; 8: 1451, 2017.
Article in English | MEDLINE | ID: mdl-29163521

ABSTRACT

BACKGROUND: Angiogenesis and immune cell infiltration are key features of gliomas and their manipulation of the microenvironment, but their prognostic significance remains indeterminate. We evaluate the interconnection between tumor-infiltrating lymphocyte (TIL) and tumor blood-vasculatures in the context of glioma progression. METHODS: Paired tumor tissues of 44 patients from three tumor-recurrent groups: diffuse astrocytomas (DA) recurred as DA, DA recurred as glioblastomas (GBM), and GBM recurred as GBM were evaluated by genetic analysis, immunohistochemistry for tumor blood vessel density, TIL subsets, and clinical outcomes. These cells were geographically divided into perivascular and intratumoral TILs. Associations were examined between these TILs, CD34+ tumor blood vessels, and clinical outcomes. To determine key changes in TIL subsets, microarray data of 15-paired tumors from patients who failed antiangiogenic therapy- bevacizumab, and 16-paired tumors from chemo-naïve recurrent GBM were also evaluated and compared. RESULTS: Upon recurrence in primary gliomas, similar kinetic changes were found between tumor blood vessels and each TIL subset in all groups, but only CD4+ including Foxp3+ TILs, positively correlated with the density of tumor blood vessels. CD4 was the predominant T cell population based on the expression of gene-transcripts in primary GBMs, and increased activated CD4+ T cells were revealed in Bevacizumab-resistant recurrent tumors (not in chemo-naïve recurrent tumors). Among these TILs, 2/3 of them were found in the perivascular niche; Foxp3+ T cells in these niches not only correlated with the tumor vessels but were also an independent predictor of shortened recurrence-free survival (RFS) (HR = 4.199, 95% CI 1.522-11.584, p = 0.006). CONCLUSION: The minimal intratumoral T cell infiltration and low detection of CD8 transcripts expression in primary GBMs can potentially limit antitumor response. CD4+ and perivascular Foxp3+ TILs associate with tumor angiogenesis and tumor progression in glioma patients. Our results suggest that combining antiangiogenic agents with immunotherapeutic approaches may help improve the antitumor efficacy for patients with malignant gliomas.

7.
Cancer Immunol Res ; 3(4): 320-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25387895

ABSTRACT

Therapeutic vaccination of patients with cancer-targeting tumor-associated antigens is a promising strategy for the specific eradication of invasive malignancies with minimal toxicity to normal tissues. However, as increasingly potent modalities for stimulating immunologic responses are developed for clinical evaluation, the risk of inflammatory and autoimmune toxicities also may be exacerbated. In this report, we describe the induction of a severe (grade 3) immunologic reaction in a patient with newly diagnosed glioblastoma (GBM) receiving autologous RNA-pulsed dendritic cell (DC) vaccines admixed with GM-CSF and administered coordinately with cycles of dose-intensified temozolomide. Shortly after the eighth administration of the admixed intradermal vaccine, the patient experienced dizziness, flushing, conjunctivitis, headache, and the outbreak of a disseminated macular/papular rash and bilateral indurated injection sites. Immunologic workup of patient reactivity revealed sensitization to the GM-CSF component of the vaccine and the production of high levels of anti-GM-CSF autoantibodies during vaccination. Removal of GM-CSF from the DC vaccine allowed continued vaccination without incident. Despite the known lymphodepletive and immunosuppressive effects of temozolomide, these observations demonstrate the capacity for the generation of severe immunologic reactivity in patients with GBM receiving DC-based therapy during adjuvant dose-intensified temozolomide.


Subject(s)
Antineoplastic Agents, Alkylating/adverse effects , Cancer Vaccines/adverse effects , Dacarbazine/analogs & derivatives , Dendritic Cells/transplantation , Glioblastoma/therapy , Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects , Autoantibodies/biosynthesis , Cancer Vaccines/therapeutic use , Combined Modality Therapy , Dacarbazine/adverse effects , Dendritic Cells/immunology , Glioblastoma/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Humans , Male , Middle Aged , Temozolomide
SELECTION OF CITATIONS
SEARCH DETAIL