Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Neurobiol Dis ; 134: 104683, 2020 02.
Article in English | MEDLINE | ID: mdl-31765727

ABSTRACT

Repeated mild traumatic brain injury (rmTBI) can lead to development of chronic traumatic encephalopathy (CTE), which is characterized by progressive neurodegeneration with presence of white matter damage, gliosis and hyper-phosphorylated tau. While animal models of rmTBI have been documented, few characterize the molecular pathogenesis and expression profiles of relevant injured brain regions. Additionally, while the usage of transgenic tau mice in rmTBI is prevalent, the effects of tau on pathological outcomes has not been well studied. Here we characterized a 42-impact closed-head rmTBI paradigm on 3-4 month old male C57BL/6 (WT) and Tau-overexpressing mice (Tau58.4). This injury paradigm resulted in chronic gliosis, T-cell infiltration, and demyelination of the optic nerve and associated white matter tracts at 1-month post-injury. At 3-months post-injury, Tau58.4 mice showed progressive neuroinflammation and neurodegeneration in multiple brain regions compared to WT mice. Corresponding to histopathology, RNAseq of the optic nerve tract at 1-month post-injury showed significant upregulation of inflammatory pathways and downregulation of myelin synthetic pathways in both genotypes. However, Tau58.4 mice showed additional changes in neurite development, protein processing, and cell stress. Comparisons with published transcriptomes of human Alzheimer's Disease and CTE revealed common signatures including neuroinflammation and downregulation of protein phosphatases. We next investigated the demyelination and T-cell infiltration phenotypes to determine whether these offer potential avenues for therapeutic intervention. Tau58.4 mice were treated with the histamine H3 receptor antagonist GSK239512 for 1-month post-injury to promote remyelination of white matter lesions. This restored myelin gene expression to sham levels but failed to repair the histopathologic lesions. Likewise, injured T-cell-deficient Rag2/Il2rg (R2G2) mice also showed evidence for inflammation and loss of myelin. However, unlike immune-competent mice, R2G2 mice had altered myeloid cell gene expression and fewer demyelinated lesions. Together this data shows that rmTBI leads to chronic white matter inflammatory demyelination and axonal loss exacerbated by human tau overexpression but suggests that immune-suppression and remyelination alone are insufficient to reverse damage.


Subject(s)
Brain Concussion/metabolism , Brain Concussion/pathology , Brain/metabolism , Brain/pathology , tau Proteins/metabolism , Animals , Brain Concussion/complications , Encephalitis/complications , Encephalitis/metabolism , Encephalitis/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , White Matter/metabolism , White Matter/pathology
2.
Proc Natl Acad Sci U S A ; 108(31): 12821-6, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21768354

ABSTRACT

The site-specific incorporation of the unnatural amino acid p-nitrophenylalanine (pNO(2)Phe) into autologous proteins overcomes self-tolerance and induces a long-lasting polyclonal IgG antibody response. To determine the molecular mechanism by which such simple modifications to amino acids are able to induce autoantibodies, we incorporated pNO(2)Phe, sulfotyrosine (SO(3)Tyr), and 3-nitrotyrosine (3NO(2)Tyr) at specific sites in murine TNF-α and EGF. A subset of TNF-α and EGF mutants with these nitrated or sulfated residues is highly immunogenic and induces antibodies against the unaltered native protein. Analysis of the immune response to the TNF-α mutants in different strains of mice that are congenic for the H-2 locus indicates that CD4 T-cell recognition is necessary for autoantibody production. IFN-γ ELISPOT analysis of CD4 T cells isolated from vaccinated mice demonstrates that peptides with mutated residues, but not the wild-type residues, are recognized. Immunization of these peptides revealed that a CD4 repertoire exists for the mutated peptides but is lacking for the wild-type peptides and that the mutated residues are processed, loaded, and presented on the I-A(b) molecule. Overall, our results illustrate that, although autoantibodies are generated against the endogenous protein, CD4 cells are activated through a neo-epitope recognition mechanism. Therefore, tolerance is maintained at a CD4 level but is broken at the level of antibody production. Finally, these results suggest that naturally occurring posttranslational modifications such as nitration may play a role in antibody-mediated autoimmune disorders.


Subject(s)
Amino Acids/immunology , CD4-Positive T-Lymphocytes/immunology , Immune Tolerance/immunology , Tumor Necrosis Factor-alpha/immunology , Amino Acid Substitution , Amino Acids/genetics , Animals , Autoantibodies/immunology , CD4-Positive T-Lymphocytes/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Epidermal Growth Factor/genetics , Epidermal Growth Factor/immunology , Epidermal Growth Factor/metabolism , Epitopes/immunology , Epitopes/metabolism , Female , Immunization/methods , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mutant Proteins/genetics , Mutant Proteins/immunology , Phenylalanine/analogs & derivatives , Phenylalanine/genetics , Phenylalanine/immunology , Time Factors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tyrosine/analogs & derivatives , Tyrosine/genetics , Tyrosine/immunology
3.
Front Neuroimaging ; 3: 1356713, 2024.
Article in English | MEDLINE | ID: mdl-38783990

ABSTRACT

Purpose: To test the ability of inversion-recovery ultrashort echo time (IR-UTE) MRI to directly detect demyelination in mice using a standard cuprizone mouse model. Methods: Non-aqueous myelin protons have ultrashort T2s and are "invisible" with conventional MRI sequences but can be detected with UTE sequences. The IR-UTE sequence uses an adiabatic inversion-recovery preparation to suppress the long T2 water signal so that the remaining signal is from the ultrashort T2 myelin component. In this study, eight 8-week-old C57BL/6 mice were fed cuprizone (n = 4) or control chow (n = 4) for 5 weeks and then imaged by 3D IR-UTE MRI. The differences in IR-UTE signal were compared in the major white matter tracts in the brain and correlated with the Luxol Fast Blue histochemical marker of myelin. Results: IR-UTE signal decreased in cuprizone-treated mice in white matter known to be sensitive to demyelination in this model, such as the corpus callosum, but not in white matter known to be resistant to demyelination, such as the internal capsule. These findings correlated with histochemical staining of myelin content. Conclusions: 3D IR-UTE MRI was sensitive to cuprizone-induced demyelination in the mouse brain, and is a promising noninvasive method for measuring brain myelin content.

4.
ChemMedChem ; 15(16): 1562-1570, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32613743

ABSTRACT

Loss of ß-cell mass and function can lead to insufficient insulin levels and ultimately to hyperglycemia and diabetes mellitus. The mainstream treatment approach involves regulation of insulin levels; however, approaches intended to increase ß-cell mass are less developed. Promoting ß-cell proliferation with low-molecular-weight inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) offers the potential to treat diabetes with oral therapies by restoring ß-cell mass, insulin content and glycemic control. GNF4877, a potent dual inhibitor of DYRK1A and glycogen synthase kinase 3ß (GSK3ß) was previously reported to induce primary human ß-cell proliferation in vitro and in vivo. Herein, we describe the lead optimization that lead to the identification of GNF4877 from an aminopyrazine hit identified in a phenotypic high-throughput screening campaign measuring ß-cell proliferation.


Subject(s)
Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Insulin-Secreting Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Mice , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Rats , Structure-Activity Relationship , Dyrk Kinases
5.
J Med Chem ; 63(6): 2958-2973, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32077280

ABSTRACT

Autoimmune deficiency and destruction in either ß-cell mass or function can cause insufficient insulin levels and, as a result, hyperglycemia and diabetes. Thus, promoting ß-cell proliferation could be one approach toward diabetes intervention. In this report we describe the discovery of a potent and selective DYRK1A inhibitor GNF2133, which was identified through optimization of a 6-azaindole screening hit. In vitro, GNF2133 is able to proliferate both rodent and human ß-cells. In vivo, GNF2133 demonstrated significant dose-dependent glucose disposal capacity and insulin secretion in response to glucose-potentiated arginine-induced insulin secretion (GPAIS) challenge in rat insulin promoter and diphtheria toxin A (RIP-DTA) mice. The work described here provides new avenues to disease altering therapeutic interventions in the treatment of type 1 diabetes (T1D).


Subject(s)
Aza Compounds/chemistry , Aza Compounds/pharmacology , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Indoles/chemistry , Indoles/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Aza Compounds/pharmacokinetics , Cell Proliferation/drug effects , Cells, Cultured , Diabetes Mellitus, Type 1/metabolism , Humans , Hypoglycemic Agents/pharmacokinetics , Indoles/pharmacokinetics , Insulin Secretion/drug effects , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Mice , Molecular Docking Simulation , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Dyrk Kinases
6.
Nat Commun ; 6: 8372, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26496802

ABSTRACT

Insufficient pancreatic ß-cell mass or function results in diabetes mellitus. While significant progress has been made in regulating insulin secretion from ß-cells in diabetic patients, no pharmacological agents have been described that increase ß-cell replication in humans. Here we report aminopyrazine compounds that stimulate robust ß-cell proliferation in adult primary islets, most likely as a result of combined inhibition of DYRK1A and GSK3B. Aminopyrazine-treated human islets retain functionality in vitro and after transplantation into diabetic mice. Oral dosing of these compounds in diabetic mice induces ß-cell proliferation, increases ß-cell mass and insulin content, and improves glycaemic control. Biochemical, genetic and cell biology data point to Dyrk1a as the key molecular target. This study supports the feasibility of treating diabetes with an oral therapy to restore ß-cell mass, and highlights a tractable pathway for future drug discovery efforts.


Subject(s)
Cell Proliferation , Glycogen Synthase Kinase 3/genetics , Insulin-Secreting Cells/cytology , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Animals , Cell Division/drug effects , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Down-Regulation/drug effects , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/enzymology , Male , Mice , Mice, Transgenic , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Pyridazines/pharmacology , Dyrk Kinases
SELECTION OF CITATIONS
SEARCH DETAIL