Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
EMBO Rep ; 24(10): e57090, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37592911

ABSTRACT

The complex life cycle of the human malaria parasite, Plasmodium falciparum, is driven by specific transcriptional programs, but it is unclear how most genes are activated or silenced at specific times. There is an association between transcription and spatial organization; however, the molecular mechanisms behind genome organization are unclear. While P. falciparum lacks key genome-organizing proteins found in metazoans, it has all core components of the cohesin complex. To investigate the role of cohesin in P. falciparum, we functionally characterize the cohesin subunit Structural Maintenance of Chromosomes protein 3 (SMC3). SMC3 knockdown during early stages of the intraerythrocytic developmental cycle (IDC) upregulates a subset of genes involved in erythrocyte egress and invasion, which are normally expressed at later stages. ChIP-seq analyses reveal that during the IDC, SMC3 enrichment at the promoter regions of these genes inversely correlates with gene expression and chromatin accessibility. These data suggest that SMC3 binding contributes to the repression of specific genes until their appropriate time of expression, revealing a new mode of stage-specific gene repression in P. falciparum.

2.
Nucleic Acids Res ; 51(20): 10829-10845, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37843128

ABSTRACT

DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.


Subject(s)
DNA Adducts , DNA , Animals , Female , Humans , Male , Rats , Chromatography, Liquid/methods , DNA/chemistry , DNA Adducts/genetics , Rodentia , Tandem Mass Spectrometry/methods
3.
Nucleic Acids Res ; 51(17): 9214-9226, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37572349

ABSTRACT

Bacteriophages and bacteria are engaged in a constant arms race, continually evolving new molecular tools to survive one another. To protect their genomic DNA from restriction enzymes, the most common bacterial defence systems, double-stranded DNA phages have evolved complex modifications that affect all four bases. This study focuses on modifications at position 7 of guanines. Eight derivatives of 7-deazaguanines were identified, including four previously unknown ones: 2'-deoxy-7-(methylamino)methyl-7-deazaguanine (mdPreQ1), 2'-deoxy-7-(formylamino)methyl-7-deazaguanine (fdPreQ1), 2'-deoxy-7-deazaguanine (dDG) and 2'-deoxy-7-carboxy-7-deazaguanine (dCDG). These modifications are inserted in DNA by a guanine transglycosylase named DpdA. Three subfamilies of DpdA had been previously characterized: bDpdA, DpdA1, and DpdA2. Two additional subfamilies were identified in this work: DpdA3, which allows for complete replacement of the guanines, and DpdA4, which is specific to archaeal viruses. Transglycosylases have now been identified in all phages and viruses carrying 7-deazaguanine modifications, indicating that the insertion of these modifications is a post-replication event. Three enzymes were predicted to be involved in the biosynthesis of these newly identified DNA modifications: 7-carboxy-7-deazaguanine decarboxylase (DpdL), dPreQ1 formyltransferase (DpdN) and dPreQ1 methyltransferase (DpdM), which was experimentally validated and harbors a unique fold not previously observed for nucleic acid methylases.


Subject(s)
Bacteriophages , Guanine , Bacteria/genetics , Bacteriophages/genetics , DNA/genetics , Guanine/analogs & derivatives
4.
Proc Natl Acad Sci U S A ; 119(38): e2123529119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095201

ABSTRACT

Cells respond to environmental stress by regulating gene expression at the level of both transcription and translation. The ∼50 modified ribonucleotides of the human epitranscriptome contribute to the latter, with mounting evidence that dynamic regulation of transfer RNA (tRNA) wobble modifications leads to selective translation of stress response proteins from codon-biased genes. Here we show that the response of human hepatocellular carcinoma cells to arsenite exposure is regulated by the availability of queuine, a micronutrient and essential precursor to the wobble modification queuosine (Q) on tRNAs reading GUN codons. Among oxidizing and alkylating agents at equitoxic concentrations, arsenite exposure caused an oxidant-specific increase in Q that correlated with up-regulation of proteins from codon-biased genes involved in energy metabolism. Limiting queuine increased arsenite-induced cell death, altered translation, increased reactive oxygen species levels, and caused mitochondrial dysfunction. In addition to demonstrating an epitranscriptomic facet of arsenite toxicity and response, our results highlight the links between environmental exposures, stress tolerance, RNA modifications, and micronutrients.


Subject(s)
Arsenites , Epigenesis, Genetic , Guanine , RNA, Transfer , Transcriptome , Arsenites/toxicity , Cell Line, Tumor , Codon/genetics , Guanine/analogs & derivatives , Guanine/metabolism , Humans , Mitochondria/drug effects , Oxidation-Reduction , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , RNA Processing, Post-Transcriptional/drug effects , RNA, Transfer/genetics
5.
J Bacteriol ; 206(4): e0045223, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38551342

ABSTRACT

The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.


Subject(s)
Escherichia coli K12 , RNA, Transfer , Humans , RNA, Transfer/genetics , Escherichia coli K12/genetics , Bacteria/genetics , Methylation , Gram-Positive Bacteria/genetics
6.
Acc Chem Res ; 56(23): 3504-3514, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37992267

ABSTRACT

As part of the classic central dogma of molecular biology, transfer RNAs (tRNAs) are integral to protein translation as the adaptor molecules that link the genetic code in messenger RNA (mRNA) to the amino acids in the growing peptide chain. tRNA function is complicated by the existence of 61 codons to specify 20 amino acids, with most amino acids coded by two or more synonymous codons. Further, there are often fewer tRNAs with unique anticodons than there are synonymous codons for an amino acid, with a single anticodon able to decode several codons by "wobbling" of the base pairs arising between the third base of the codon and the first position on the anticodon. The complications introduced by synonymous codons and wobble base pairing began to resolve in the 1960s with the discovery of dozens of chemical modifications of the ribonucleotides in tRNA, which, by analogy to the epigenome, are now collectively referred to as the epitranscriptome for not changing the genetic code inherent to all RNA sequences. tRNA modifications were found to stabilize codon-anticodon interactions, prevent misinitiation of translation, and promote translational fidelity, among other functions, with modification deficiencies causing pathological phenotypes. This led to hypotheses that modification-dependent tRNA decoding efficiencies might play regulatory roles in cells. However, it was only with the advent of systems biology and convergent "omic" technologies that the higher level function of synonymous codons and tRNA modifications began to emerge.Here, we describe our laboratories' discovery of tRNA reprogramming and codon-biased translation as a mechanism linking tRNA modifications and synonymous codon usage to regulation of gene expression at the level of translation. Taking a historical approach, we recount how we discovered that the 8-10 modifications in each tRNA molecule undergo unique reprogramming in response to cellular stresses to promote translation of mRNA transcripts with unique codon usage patterns. These modification tunable transcripts (MoTTs) are enriched with specific codons that are differentially decoded by modified tRNAs and that fall into functional families of genes encoding proteins necessary to survive the specific stress. By developing and applying systems-level technologies, we showed that cells lacking specific tRNA modifications are sensitized to certain cellular stresses by mistranslation of proteins, disruption of mitochondrial function, and failure to translate critical stress response proteins. In essence, tRNA reprogramming serves as a cellular coping strategy, enabling rapid translation of proteins required for stress-specific cell response programs. Notably, this phenomenon has now been characterized in all organisms from viruses to humans and in response to all types of environmental changes. We also elaborate on recent findings that cancer cells hijack this mechanism to promote their own growth, metastasis, and chemotherapeutic resistance. We close by discussing how understanding of codon-biased translation in various systems can be exploited to develop new therapeutics and biomanufacturing processes.


Subject(s)
Anticodon , Codon Usage , Humans , Anticodon/genetics , Protein Biosynthesis , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Codon/genetics , Amino Acids/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Environ Sci Technol ; 58(26): 11301-11308, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38900968

ABSTRACT

Tens of thousands of people in southern Europe suffer from Balkan endemic nephropathy (BEN), and four times as many are at risk. Incidental ingestion of aristolochic acids (AAs), stemming from the ubiquitousAristolochia clematitis(birthwort) weed in the region, leads to DNA adduct-induced toxicity in kidney cells, the primary cause of BEN. Numerous cofactors, including toxic organics and metals, have been investigated, but all have shown small contributions to the overall BEN relative to non-BEN village distribution gradients. Here, we reveal that combustion-derived pollutants from wood and coal burning in Serbia also contaminate arable soil and test as plausible causative factors of BEN. Using a GC-MS screening method, biomass-burning-derived furfural and coal-burning-derived medium-chain alkanes were detected in soil samples from BEN endemic areas levels at up to 63-times and 14-times higher, respectively, than in nonendemic areas. Significantly higher amounts were also detected in colocated wheat grains. Coexposure studies with cultured kidney cells showed that these pollutants enhance DNA adduct formation by AA, - the cause of AA nephrotoxicity and carcinogenicity. With the coincidence of birthwort-derived AAs and the widespread practice of biomass and coal burning for household cooking and heating purposes and agricultural burning in rural low-lying flood-affected areas in the Balkans, these results implicate combustion-derived pollutants in promoting the development of BEN.


Subject(s)
Balkan Nephropathy , Floods , Balkan Nephropathy/chemically induced , Balkan Nephropathy/epidemiology , Humans , Coal , Serbia , Soil Pollutants/toxicity , Aristolochic Acids , Animals , Aristolochia/chemistry , Balkan Peninsula , Wood , Kidney Diseases/chemically induced
8.
J Biol Chem ; 298(2): 101571, 2022 02.
Article in English | MEDLINE | ID: mdl-35007529

ABSTRACT

Erythromycin resistance methyltransferases (Erms) confer resistance to macrolide, lincosamide, and streptogramin antibiotics in Gram-positive bacteria and mycobacteria. Although structural information for ErmAM, ErmC, and ErmE exists from Gram-positive bacteria, little is known about the Erms in mycobacteria, as there are limited biochemical data and no structures available. Here, we present crystal structures of Erm38 from Mycobacterium smegmatis in apoprotein and cofactor-bound forms. Based on structural analysis and mutagenesis, we identified several catalytically critical, positively charged residues at a putative RNA-binding site. We found that mutation of any of these sites is sufficient to abolish methylation activity, whereas the corresponding RNA-binding affinity of Erm38 remains unchanged. The methylation reaction thus appears to require a precise ensemble of amino acids to accurately position the RNA substrate, such that the target nucleotide can be methylated. In addition, we computationally constructed a model of Erm38 in complex with a 32-mer RNA substrate. This model shows the RNA substrate stably bound to Erm38 by a patch of positively charged residues. Furthermore, a π-π stacking interaction between a key aromatic residue of Erm38 and a target adenine of the RNA substrate forms a critical interaction needed for methylation. Taken together, these data provide valuable insights into Erm-RNA interactions, which will aid subsequent structure-based drug design efforts.


Subject(s)
Bacterial Proteins , Erythromycin , Methyltransferases , Mycobacterium smegmatis , Anti-Bacterial Agents , Bacterial Proteins/chemistry , Binding Sites , Drug Resistance, Microbial , Erythromycin/pharmacology , Methyltransferases/chemistry , Methyltransferases/metabolism , Mycobacterium smegmatis/enzymology , RNA/chemistry , RNA/metabolism
9.
Bioconjug Chem ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36888923

ABSTRACT

Advances in peroxidase and biotin ligase-mediated signal amplification have enabled high-resolution subcellular mapping of endogenous RNA localization and protein-protein interactions. Application of these technologies has been limited to RNA and proteins because of the reactive groups required for biotinylation in each context. Here we report several novel methods for proximity biotinylation of exogenous oligodeoxyribonucleotides by application of well-established and convenient enzymatic tools. We describe approaches using simple and efficient conjugation chemistries to modify deoxyribonucleotides with "antennae" that react with phenoxy radicals or biotinoyl-5'-adenylate. In addition, we report chemical details of a previously undescribed adduct between tryptophan and a phenoxy radical group. These developments have potential application in the selection of exogenous nucleic acids capable of unaided entry into living cells.

10.
Proc Natl Acad Sci U S A ; 117(25): 14322-14330, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32518115

ABSTRACT

Phosphorothioate (PT) DNA modifications-in which a nonbonding phosphate oxygen is replaced with sulfur-represent a widespread, horizontally transferred epigenetic system in prokaryotes and have a highly unusual property of occupying only a small fraction of available consensus sequences in a genome. Using Salmonella enterica as a model, we asked a question of fundamental importance: How do the PT-modifying DndA-E proteins select their GPSAAC/GPSTTC targets? Here, we applied innovative analytical, sequencing, and computational tools to discover a novel behavior for DNA-binding proteins: The Dnd proteins are "parked" at the G6mATC Dam methyltransferase consensus sequence instead of the expected GAAC/GTTC motif, with removal of the 6mA permitting extensive PT modification of GATC sites. This shift in modification sites further revealed a surprising constancy in the density of PT modifications across the genome. Computational analysis showed that GAAC, GTTC, and GATC share common features of DNA shape, which suggests that PT epigenetics are regulated in a density-dependent manner partly by DNA shape-driven target selection in the genome.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/metabolism , Epigenesis, Genetic/physiology , Epigenomics , Phosphates/metabolism , 2-Aminopurine , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Consensus Sequence , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Genome, Bacterial , Salmonella enterica/genetics
11.
Nat Chem Biol ; 16(9): 964-972, 2020 09.
Article in English | MEDLINE | ID: mdl-32514182

ABSTRACT

Chemical modifications of the nucleosides that comprise transfer RNAs are diverse. However, the structure, location and extent of modifications have been systematically charted in very few organisms. Here, we describe an approach in which rapid prediction of modified sites through reverse transcription-derived signatures in high-throughput transfer RNA-sequencing (tRNA-seq) data is coupled with identification of tRNA modifications through RNA mass spectrometry. Comparative tRNA-seq enabled prediction of several Vibrio cholerae modifications that are absent from Escherichia coli and also revealed the effects of various environmental conditions on V. cholerae tRNA modification. Through RNA mass spectrometric analyses, we showed that two of the V. cholerae-specific reverse transcription signatures reflected the presence of a new modification (acetylated acp3U (acacp3U)), while the other results from C-to-Ψ RNA editing, a process not described before. These findings demonstrate the utility of this approach for rapid surveillance of tRNA modification profiles and environmental control of tRNA modification.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA, Transfer/genetics , RNA, Transfer/metabolism , Vibrio cholerae/genetics , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Cholera/microbiology , Cytidine/genetics , Escherichia coli/genetics , Mass Spectrometry/methods , RNA Editing , RNA, Transfer/chemistry , RNA, Transfer, Tyr/genetics , RNA, Transfer, Tyr/metabolism , Rabbits , Vibrio cholerae/pathogenicity
12.
Nucleic Acids Res ; 48(1): 184-199, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31777939

ABSTRACT

DNA cytosine modifications are key epigenetic regulators of cellular processes in mammalian cells, with their misregulation leading to varied disease states. In the human malaria parasite Plasmodium falciparum, a unicellular eukaryotic pathogen, little is known about the predominant cytosine modifications, cytosine methylation (5mC) and hydroxymethylation (5hmC). Here, we report the first identification of a hydroxymethylcytosine-like (5hmC-like) modification in P. falciparum asexual blood stages using a suite of biochemical methods. In contrast to mammalian cells, we report 5hmC-like levels in the P. falciparum genome of 0.2-0.4%, which are significantly higher than the methylated cytosine (mC) levels of 0.01-0.05%. Immunoprecipitation of hydroxymethylated DNA followed by next generation sequencing (hmeDIP-seq) revealed that 5hmC-like modifications are enriched in gene bodies with minimal dynamic changes during asexual development. Moreover, levels of the 5hmC-like base in gene bodies positively correlated to transcript levels, with more than 2000 genes stably marked with this modification throughout asexual development. Our work highlights the existence of a new predominant cytosine DNA modification pathway in P. falciparum and opens up exciting avenues for gene regulation research and the development of antimalarials.


Subject(s)
5-Methylcytosine/analogs & derivatives , DNA, Protozoan/genetics , Epigenesis, Genetic , Genome, Protozoan , Plasmodium falciparum/genetics , RNA, Messenger/genetics , 5-Methylcytosine/metabolism , Cytosine/metabolism , DNA Methylation , DNA, Protozoan/metabolism , Erythrocytes/parasitology , High-Throughput Nucleotide Sequencing , Humans , Hydroxylation , Plasmodium falciparum/metabolism , RNA, Messenger/metabolism
13.
Nucleic Acids Res ; 48(18): 10383-10396, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32941607

ABSTRACT

In the constant evolutionary battle against mobile genetic elements (MGEs), bacteria have developed several defense mechanisms, some of which target the incoming, foreign nucleic acids e.g. restriction-modification (R-M) or CRISPR-Cas systems. Some of these MGEs, including bacteriophages, have in turn evolved different strategies to evade these hurdles. It was recently shown that the siphophage CAjan and 180 other viruses use 7-deazaguanine modifications in their DNA to evade bacterial R-M systems. Among others, phage CAjan genome contains a gene coding for a DNA-modifying homolog of a tRNA-deazapurine modification enzyme, together with four 7-cyano-7-deazaguanine synthesis genes. Using the CRISPR-Cas9 genome editing tool combined with the Nanopore Sequencing (ONT) we showed that the 7-deazaguanine modification in the CAjan genome is dependent on phage-encoded genes. The modification is also site-specific and is found mainly in two separate DNA sequence contexts: GA and GGC. Homology modeling of the modifying enzyme DpdA provides insight into its probable DNA binding surface and general mode of DNA recognition.


Subject(s)
Bacteriophages/genetics , DNA/genetics , Nucleotide Motifs/genetics , Pyrimidinones/pharmacology , Pyrroles/pharmacology , Bacteriophages/drug effects , Base Sequence/drug effects , CRISPR-Cas Systems/genetics , DNA/drug effects , DNA Restriction-Modification Enzymes/drug effects , Escherichia coli/virology , Gene Editing , Guanine/analogs & derivatives , Guanine/pharmacology , Humans , Nanopore Sequencing , Nucleotide Motifs/drug effects , Siphoviridae/genetics
14.
Nucleic Acids Res ; 48(12): 6715-6725, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32484547

ABSTRACT

DNA damage and epigenetic marks are well established to have profound influences on genome stability and cell phenotype, yet there are few technologies to obtain high-resolution genomic maps of the many types of chemical modifications of DNA. Here we present Nick-seq for quantitative, sensitive, and accurate mapping of DNA modifications at single-nucleotide resolution across genomes. Pre-existing breaks are first blocked and DNA modifications are then converted enzymatically or chemically to strand-breaks for both 3'-extension by nick-translation to produce nuclease-resistant oligonucleotides and 3'-terminal transferase tailing. Following library preparation and next generation sequencing, the complementary datasets are mined with a custom workflow to increase sensitivity, specificity and accuracy of the map. The utility of Nick-seq is demonstrated with genomic maps of site-specific endonuclease strand-breaks in purified DNA from Eschericia coli, phosphorothioate epigenetics in Salmonella enterica Cerro 87, and oxidation-induced abasic sites in DNA from E. coli treated with a sublethal dose of hydrogen peroxide. Nick-seq applicability is demonstrated with strategies for >25 types of DNA modification and damage.


Subject(s)
DNA Damage/drug effects , Epigenesis, Genetic/genetics , Genome, Bacterial/genetics , Genomic Instability/drug effects , Chromosome Mapping , DNA/chemistry , DNA/drug effects , DNA Damage/genetics , Escherichia coli/genetics , Genome, Bacterial/drug effects , High-Throughput Nucleotide Sequencing , Hydrogen Peroxide/toxicity , Nucleotides/chemistry , Salmonella enterica/genetics , Sequence Analysis, DNA
15.
Proc Natl Acad Sci U S A ; 116(38): 19126-19135, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31481610

ABSTRACT

Queuosine (Q) is a complex tRNA modification widespread in eukaryotes and bacteria that contributes to the efficiency and accuracy of protein synthesis. Eukaryotes are not capable of Q synthesis and rely on salvage of the queuine base (q) as a Q precursor. While many bacteria are capable of Q de novo synthesis, salvage of the prokaryotic Q precursors preQ0 and preQ1 also occurs. With the exception of Escherichia coli YhhQ, shown to transport preQ0 and preQ1, the enzymes and transporters involved in Q salvage and recycling have not been well described. We discovered and characterized 2 Q salvage pathways present in many pathogenic and commensal bacteria. The first, found in the intracellular pathogen Chlamydia trachomatis, uses YhhQ and tRNA guanine transglycosylase (TGT) homologs that have changed substrate specificities to directly salvage q, mimicking the eukaryotic pathway. The second, found in bacteria from the gut flora such as Clostridioides difficile, salvages preQ1 from q through an unprecedented reaction catalyzed by a newly defined subgroup of the radical-SAM enzyme family. The source of q can be external through transport by members of the energy-coupling factor (ECF) family or internal through hydrolysis of Q by a dedicated nucleosidase. This work reinforces the concept that hosts and members of their associated microbiota compete for the salvage of Q precursors micronutrients.


Subject(s)
Bacterial Proteins/metabolism , Chlamydia Infections/metabolism , Chlamydia trachomatis/metabolism , Clostridioides difficile/metabolism , Clostridium Infections/metabolism , Guanine/analogs & derivatives , Chlamydia Infections/microbiology , Chlamydia trachomatis/growth & development , Clostridioides difficile/growth & development , Clostridium Infections/microbiology , Guanine/metabolism , Humans , Pentosyltransferases/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Signal Transduction , Substrate Specificity
16.
RNA ; 25(11): 1481-1496, 2019 11.
Article in English | MEDLINE | ID: mdl-31399541

ABSTRACT

The tRNA (m1G37) methyltransferase TrmD catalyzes m1G formation at position 37 in many tRNA isoacceptors and is essential in most bacteria, which positions it as a target for antibiotic development. In spite of its crucial role, little is known about TrmD in Pseudomonas aeruginosa (PaTrmD), an important human pathogen. Here we present detailed structural, substrate, and kinetic properties of PaTrmD. The mass spectrometric analysis confirmed the G36G37-containing tRNAs Leu(GAG), Leu(CAG), Leu(UAG), Pro(GGG), Pro(UGG), Pro(CGG), and His(GUG) as PaTrmD substrates. Analysis of steady-state kinetics with S-adenosyl-l-methionine (SAM) and tRNALeu(GAG) showed that PaTrmD catalyzes the two-substrate reaction by way of a ternary complex, while isothermal titration calorimetry revealed that SAM and tRNALeu(GAG) bind to PaTrmD independently, each with a dissociation constant of 14 ± 3 µM. Inhibition by the SAM analog sinefungin was competitive with respect to SAM (Ki = 0.41 ± 0.07 µM) and uncompetitive for tRNA (Ki = 6.4 ± 0.8 µM). A set of crystal structures of the homodimeric PaTrmD protein bound to SAM and sinefungin provide the molecular basis for enzyme competitive inhibition and identify the location of the bound divalent ion. These results provide insights into PaTrmD as a potential target for the development of antibiotics.


Subject(s)
Pseudomonas aeruginosa/enzymology , tRNA Methyltransferases/metabolism , Catalysis , Crystallography, X-Ray , Kinetics , Protein Binding , Protein Conformation , RNA, Transfer/metabolism , S-Adenosylmethionine/metabolism , Substrate Specificity , tRNA Methyltransferases/chemistry , tRNA Methyltransferases/isolation & purification
17.
Mol Syst Biol ; 16(8): e9569, 2020 08.
Article in English | MEDLINE | ID: mdl-32816370

ABSTRACT

Mutually exclusive expression of the var multigene family is key to immune evasion and pathogenesis in Plasmodium falciparum, but few factors have been shown to play a direct role. We adapted a CRISPR-based proteomics approach to identify novel factors associated with var genes in their natural chromatin context. Catalytically inactive Cas9 ("dCas9") was targeted to var gene regulatory elements, immunoprecipitated, and analyzed with mass spectrometry. Known and novel factors were enriched including structural proteins, DNA helicases, and chromatin remodelers. Functional characterization of PfISWI, an evolutionarily divergent putative chromatin remodeler enriched at the var gene promoter, revealed a role in transcriptional activation. Proteomics of PfISWI identified several proteins enriched at the var gene promoter such as acetyl-CoA synthetase, a putative MORC protein, and an ApiAP2 transcription factor. These findings validate the CRISPR/dCas9 proteomics method and define a new var gene-associated chromatin complex. This study establishes a tool for targeted chromatin purification of unaltered genomic loci and identifies novel chromatin-associated factors potentially involved in transcriptional control and/or chromatin organization of virulence genes in the human malaria parasite.


Subject(s)
Adenosine Triphosphatases/metabolism , Plasmodium falciparum/pathogenicity , Proteomics/methods , Transcription Factors/metabolism , Virulence Factors/genetics , Animals , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , CRISPR-Cas Systems , Chromatin Immunoprecipitation Sequencing , Humans , Introns , Mass Spectrometry , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Promoter Regions, Genetic , Protein Interaction Maps , Virulence Factors/metabolism
18.
RNA Biol ; 18(4): 563-575, 2021 04.
Article in English | MEDLINE | ID: mdl-32893724

ABSTRACT

Protein synthesis rate and accuracy are tightly controlled by the cell and are essential for proteome homoeostasis (proteostasis); however, the full picture of how mRNA translational factors maintain protein synthesis accuracy and co-translational protein folding are far from being fully understood. To address this question, we evaluated the role of 70 yeast tRNA-modifying enzyme genes on protein aggregation and used mass spectrometry to identify the aggregated proteins. We show that modification of uridine at anticodon position 34 (U34) by the tRNA-modifying enzymes Elp1, Elp3, Sml3 and Trm9 is critical for proteostasis, the mitochondrial tRNA-modifying enzyme Slm3 plays a fundamental role in general proteostasis and that stress response proteins whose genes are enriched in codons decoded by tRNAs lacking mcm5U34, mcm5s2U34, ncm5U34, ncm5Um34, modifications are overrepresented in protein aggregates of the ELP1, SLM3 and TRM9 KO strains. Increased rates of amino acid misincorporation were also detected in these strains at protein sites that specifically mapped to the codons sites that are decoded by the hypomodified tRNAs, demonstrating that U34 tRNA modifications safeguard the proteome from translational errors, protein misfolding and proteotoxic stress.


Subject(s)
Enzymes/genetics , Protein Aggregates/genetics , Protein Biosynthesis/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae , Codon/genetics , Mutation , Organisms, Genetically Modified , Proteostasis/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Transfer/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
19.
Nucleic Acids Res ; 47(20): e130, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31504804

ABSTRACT

Chemical modification of transcripts with 5' caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps-m7GpppN, m7GpppNm, GpppN, GpppNm, and m2,2,7GpppG-and 5 'metabolite' caps-NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA. Applying CapQuant to RNA from purified dengue virus, Escherichia coli, yeast, mouse tissues, and human cells, we discovered new cap structures in humans and mice (FAD, UDP-Glc, UDP-GlcNAc, and m7Gpppm6A), cell- and tissue-specific variations in cap methylation, and high proportions of caps lacking 2'-O-methylation (m7Gpppm6A in mammals, m7GpppA in dengue virus). While substantial Dimroth-induced loss of m1A and m1Am arose with specific RNA processing conditions, human lymphoblast cells showed no detectable m1A or m1Am in caps. CapQuant accurately captured the preference for purine nucleotides at eukaryotic transcription start sites and the correlation between metabolite levels and metabolite caps.


Subject(s)
Epigenesis, Genetic , RNA Caps/chemistry , RNA Processing, Post-Transcriptional , Sequence Analysis, RNA/methods , Transcriptome , Animals , Cells, Cultured , Dengue Virus , Female , Humans , Mice , Mice, Inbred C57BL , RNA Caps/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Saccharomyces cerevisiae
20.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298953

ABSTRACT

A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using Pantoea agglomerans strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a gene encoding a preQ0 DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC-MS/MS analysis indicates 2'-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of Pantoea phages. Thus, the data presented in this study provide new information on Pantoea-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.


Subject(s)
DNA, Viral , Genome, Viral , Guanosine , Open Reading Frames , Pantoea/virology , Siphoviridae , Viral Proteins , DNA, Viral/genetics , DNA, Viral/metabolism , Guanosine/analogs & derivatives , Guanosine/chemistry , Guanosine/metabolism , Siphoviridae/genetics , Siphoviridae/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL