Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nano Lett ; 19(2): 684-691, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30669832

ABSTRACT

Hot-carriers, that is, charge carriers with an effective temperature higher than that of the lattice, may contribute to the high power conversion efficiency (PCE) shown by perovskite-based solar cells (PSCs), which are now competitive with silicon solar cells. Hot-carriers lose their excess energy in very short times, typically in a few picoseconds after excitation. For this reason, the carrier dynamics occurring on this time scale are extremely important in determining the participation of hot-carriers in the photovoltaic process. However, the stability of PSCs over time still remains an issue that calls for a solution. In this work, we demonstrate that the insertion of graphene flakes into the mesoscopic TiO2 scaffold leads to stable values of carrier temperature. In PSCs aged over 1 week, we indeed observe that in the graphene-free perovskite cells the carrier temperature decreases by about 500 K from 1800 to 1300 K, while the graphene-containing cell shows a reduction of less than 200 K after the same aging time delay. The stability of the carrier temperature reflects the stability of the perovskite nanocrystals embedded in the mesoporous graphene-TiO2 layer. Our results, based on femtosecond transient absorption measurements, show that the insertion of graphene can be beneficial for the design of stable PSCs with the aim of exploiting the hot-carrier contribution to the PCE of the PSCs.

2.
Nanoscale Adv ; 2(10): 4728-4739, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-36132930

ABSTRACT

Membrane distillation is envisaged to be a promising best practice to recover freshwater from seawater with the prospect of building low energy-consuming devices powered by natural and renewable energy sources in remote and less accessible areas. Moreover, there is an additional benefit of integrating this green technology with other well-established operations dedicated to desalination. Today, the development of membrane distillation depends on the productivity-efficiency ratio on a large scale. Despite hydrophobic commercial membranes being widely used, no membrane with suitable morphological and chemical feature is readily available in the market. Thus, there is a real need to identify best practices for developing new efficient membranes for more productive and eco-sustainable membrane distillation devices. Here, we propose engineered few-layer graphene membranes, showing enhanced trans-membrane fluxes and total barrier action against NaCl ions. The obtained performances are linked with filling polymeric membranes with few-layer graphene of 490 nm in lateral size, produced by the wet-jet milling technology. The experimental evidence, together with comparative analyses, confirmed that the use of more largely sized few-layer graphene leads to superior productivity related efficiency trade-off for the membrane distillation process. Herein, it was demonstrated that the quality of exfoliation is a crucial factor for addressing the few-layer graphene supporting the separation capability of the host membranes designed for water desalination.

3.
Nanoscale ; 9(22): 7612-7624, 2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28540370

ABSTRACT

We report the frictional response of few-layer graphene (FLG) flakes obtained by the liquid phase exfoliation (LPE) of pristine graphite. To this end, we inkjet print FLG on bare and hexamethyldisilazane-terminated SiO2 substrates, producing micrometric patterns with nanoscopic roughness that are investigated by atomic force microscopy. Normal force spectroscopy and atomically-resolved morphologies indicate reduced surface contamination by solvents after a vacuum annealing process. Notably, the printed FLG flakes show ultralow friction comparable to that of micromechanically exfoliated graphene flakes. Lubricity is retained on flakes with a lateral size of a few tens of nanometres, and with a thickness as small as ∼2 nm, confirming the high crystalline quality and low defects density in the FLG basal plane. Surface exposed step edges exhibit the highest friction values, representing the preferential sites for the origin of the secondary dissipative processes related to edge straining, wear or lateral displacement of the flakes. Our work demonstrates that LPE enables fundamental studies on graphene friction to the single-flake level. The capability to deliver ultralow-friction-graphene over technologically relevant substrates, using a scalable production route and a high-throughput, large-area printing technique, may also open up new opportunities in the lubrication of micro- and nano-electromechanical systems.

SELECTION OF CITATIONS
SEARCH DETAIL