Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Am Soc Nephrol ; 34(12): 2039-2050, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37794564

ABSTRACT

SIGNIFICANCE STATEMENT: Accurate diagnosis of a patient's underlying cause of CKD can influence management and ultimately overall health. The single-arm, interventional, prospective Renasight Clinical Application, Review, and Evaluation study assessed the utility of genetic testing with a 385 gene kidney disease panel on the diagnosis and management of 1623 patients with CKD. Among 20.8% of patients who had positive genetic findings, half resulted in a new or reclassified diagnosis. In addition, a change in management because of genetic testing was reported for 90.7% of patients with positive findings, including treatment changes in 32.9%. These findings demonstrate that genetic testing has a significant effect on both CKD diagnosis and management. BACKGROUND: Genetic testing in CKD has recently been shown to have diagnostic utility with many predicted implications for clinical management, but its effect on management has not been prospectively evaluated. METHODS: Renasight Clinical Application, Review, and Evaluation RenaCARE (ClinicalTrials.gov NCT05846113 ) is a single-arm, interventional, prospective, multicenter study that evaluated the utility of genetic testing with a broad, 385 gene panel (the Renasight TM test) on the diagnosis and management of adult patients with CKD recruited from 31 US-based community and academic medical centers. Patient medical history and clinical CKD diagnosis were collected at enrollment. Physician responses to questionnaires regarding patient disease categorization and management were collected before genetic testing and 1 month after the return of test results. Changes in CKD diagnosis and management after genetic testing were assessed. RESULTS: Of 1623 patients with CKD in 13 predefined clinical disease categories (ages, 18-96; median, 55 years), 20.8% ( n =338) had positive genetic findings spanning 54 genes. Positive genetic findings provided a new diagnosis or reclassified a prior diagnosis in 48.8% of those patients. Physicians reported that genetic results altered the management of 90.7% of patients with a positive genetic finding, including changes in treatment plan, which were reported in 32.9% of these patients. CONCLUSIONS: Genetic testing with a CKD-focused 385 gene panel substantially refined clinical diagnoses and had widespread implications for clinical management, including appropriate treatment strategies. These data support the utility of broader integration of panels of genetic tests into the clinical care paradigm for patients with CKD. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: ClinicalTrials.gov, NCT05846113 .


Subject(s)
Renal Insufficiency, Chronic , Humans , Adult , Adolescent , Young Adult , Middle Aged , Aged , Aged, 80 and over , Prospective Studies , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/therapy , Genetic Testing
2.
Am J Nephrol ; 53(4): 297-306, 2022.
Article in English | MEDLINE | ID: mdl-35325889

ABSTRACT

INTRODUCTION: Chronic kidney disease (CKD) is a major public health issue in the USA. Identification of monogenic causes of CKD, which are present in ∼10% of adult cases, can impact prognosis and patient management. Broad gene panels can provide unbiased testing approaches, which are advantageous in phenotypically heterogeneous diseases. However, the use and yield of broad genetic panels by nephrologists in clinical practice is not yet well characterized. METHODS: Renal genetic testing, ordered exclusively for clinical purposes, predominantly by general and transplant nephrologists within the USA, was performed on 1,007 consecutive unique patient samples. Testing was performed using a commercially available next-generation sequencing-based 382 gene kidney disease panel. Pathogenic (P) and likely pathogenic (LP) variants were reported. Positive findings included a monoallelic P/LP variant in an autosomal dominant or X-linked gene and biallelic P/LP variants in autosomal recessive genes. RESULTS: Positive genetic findings were identified in 21.1% (212/1,007) of cases. A total of 220 positive results were identified across 48 genes. Positive results occurred most frequently in the PKD1 (34.1%), COL4A5 (10.9%), PKD2 (10.0%), COL4A4 (6.4%), COL4A3 (5.9%), and TTR (4.1%) genes. Variants identified in the remaining 42 genes comprised 28.6% of the total positive findings, including single positive results in 26 genes. Positive results in >1 gene were identified in 7.5% (16/212) of cases. CONCLUSIONS: Use of broad panel genetic testing by clinical nephrologists had a high success rate, similar to results obtained by academic centers specializing in genetics.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Adult , Female , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics
3.
Hum Mol Genet ; 27(14): 2573-2585, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29688390

ABSTRACT

Aneuploidy is prevalent in human embryos and is the leading cause of pregnancy loss. Many aneuploidies arise during oogenesis, increasing with maternal age. Superimposed on these meiotic aneuploidies are frequent errors occurring during early mitotic divisions, contributing to widespread chromosomal mosaicism. Here we reanalyzed a published dataset comprising preimplantation genetic testing for aneuploidy in 24 653 blastomere biopsies from day-3 cleavage-stage embryos, as well as 17 051 trophectoderm biopsies from day-5 blastocysts. We focused on complex abnormalities that affected multiple chromosomes simultaneously, seeking insights into their formation. In addition to well-described patterns such as triploidy and haploidy, we identified 4.7% of blastomeres possessing characteristic hypodiploid karyotypes. We inferred this signature to have arisen from tripolar chromosome segregation in normally fertilized diploid zygotes or their descendant diploid cells. This could occur via segregation on a tripolar mitotic spindle or by rapid sequential bipolar mitoses without an intervening S-phase. Both models are consistent with time-lapse data from an intersecting set of 77 cleavage-stage embryos, which were enriched for the tripolar signature among embryos exhibiting abnormal cleavage. The tripolar signature was strongly associated with common maternal genetic variants spanning the centrosomal regulator PLK4, driving the association we previously reported with overall mitotic errors. Our findings are consistent with the known capacity of PLK4 to induce tripolar mitosis or precocious M-phase upon dysregulation. Together, our data support tripolar chromosome segregation as a key mechanism generating complex aneuploidy in cleavage-stage embryos and implicate maternal genotype at a quantitative trait locus spanning PLK4 as a factor influencing its occurrence.


Subject(s)
Aneuploidy , Oogenesis/genetics , Protein Serine-Threonine Kinases/genetics , Spindle Apparatus/genetics , Adolescent , Adult , Blastocyst/pathology , Blastomeres/pathology , Chromosome Segregation/genetics , Female , Genetic Testing , Genetic Variation , Genotype , Humans , Karyotype , Maternal Age , Middle Aged , Mitosis/genetics , Pregnancy , Spindle Apparatus/pathology
4.
Genet Med ; 22(8): 1320-1328, 2020 08.
Article in English | MEDLINE | ID: mdl-32366966

ABSTRACT

PURPOSE: To present results from a large cohort of individuals receiving expanded carrier screening (CS) in the United States. METHODS: Single-gene disorder carrier status for 381,014 individuals was determined using next-generation sequencing (NGS) based CS for up to 274 genes. Detection rates were compared with literature-reported values derived from disease prevalence and carrier frequencies. Combined theoretical affected pregnancy rates for the 274 screened disorders were calculated. RESULTS: For Ashkenazi Jewish (AJ) diseases, 81.6% (4434/5435) of carriers identified did not report AJ ancestry. For cystic fibrosis, 44.0% (6260/14,229) of carriers identified had a variant not on the standard genotyping panel. Individuals at risk of being a silent spinal muscular atrophy carrier, not detectable by standard screening, comprised 1/39 (8763/344,407) individuals. For fragile X syndrome, compared with standard premutation screening, AGG interruption analysis modified risk in 83.2% (1128/1356) premutation carriers. Assuming random pairing across the study population, approximately 1/175 pregnancies would be affected by a disorder in the 274-gene screening panel. CONCLUSION: Compared with standard screening, NGS-based CS provides additional information that may impact reproductive choices. Pan-ethnic CS leads to substantially increased identification of at-risk couples. These data support offering NGS-based CS to all reproductive-aged women.


Subject(s)
Fragile X Syndrome , Genetic Testing , Adult , Ethnicity , Female , Fragile X Syndrome/diagnosis , Fragile X Syndrome/epidemiology , Fragile X Syndrome/genetics , Genetic Carrier Screening , Heterozygote , Humans , United States/epidemiology
6.
PLoS Genet ; 11(10): e1005601, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26491874

ABSTRACT

Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4-8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight into the cytogenetic mechanisms underlying their formation and the consequences for human fertility.


Subject(s)
Aneuploidy , Chromosome Aberrations , Chromosomes/genetics , Embryonic Development/genetics , Blastomeres , Female , Fertilization in Vitro , Humans , Mitosis/genetics , Pregnancy , Preimplantation Diagnosis
7.
Mol Genet Genomic Med ; 10(12): e2085, 2022 12.
Article in English | MEDLINE | ID: mdl-36333997

ABSTRACT

BACKGROUND: Automation has been introduced into variant interpretation, but it is not known how automated variant interpretation performs on a stand-alone basis. The purpose of this study was to evaluate a fully automated computerized approach. METHOD: We reviewed all variants encountered in a set of carrier screening panels over a 1-year interval. Observed variants with high-confidence ClinVar interpretations were included in the analysis; those without high-confidence ClinVar entries were excluded. RESULTS: Discrepancy rates between automated interpretations and high-confidence ClinVar entries were analyzed. Of the variants interpreted as positive (likely pathogenic or pathogenic) based on ClinVar information, 22.6% were classified as negative (variants of uncertain significance, likely benign or benign) variants by the automated method. Of the ClinVar negative variants, 1.7% were classified as positive by the automated software. On a per-case basis, which accounts for variant frequency, 63.4% of cases with a ClinVar high-confidence positive variant were classified as negative by the automated method. CONCLUSION: While automation in genetic variant interpretation holds promise, there is still a need for manual review of the output. Additional validation of automated variant interpretation methods should be conducted.


Subject(s)
Databases, Genetic , Genetic Variation , Humans , Software
8.
J Heart Lung Transplant ; 41(7): 919-927, 2022 07.
Article in English | MEDLINE | ID: mdl-35577713

ABSTRACT

BACKGROUND: Endomyocardial biopsy (EMB), the reference surveillance test for acute rejection (AR) in heart transplant (HTx) recipients, is invasive, costly, and shows significant interobserver variability. Recent studies indicate that donor-derived cell-free DNA (dd-cfDNA), obtained non-invasively from blood, is associated with AR and could reduce the frequency of EMB surveillance. The aim of this study was to examine the performance characteristics of a novel test for detecting AR in adult HTx recipients. METHODS: Plasma samples with contemporaneous EMBs were obtained from HTx recipients. A clinically available SNP-based massively multiplexed-PCR dd-cfDNA assay was used to measure dd-cfDNA fraction. dd-cfDNA fractions were compared with EMB-defined rejection status and test performance was assessed by constructing ROC curves and calculating accuracy measures. RESULTS: A total of 811 samples from 223 patients with dd-cfDNA testing and contemporaneous EMB were eligible for the study. dd-cfDNA fraction was significantly higher in AR (median 0.58%, IQR, 0.13%-1.68%) compared to non-AR (median 0.04%, IQR, 0.01%-0.11%, pc < 0.001). ROC analysis produced an area under the curve (AUC-ROC) of 0.86 (95% CI, 0.77-0.96). Defining samples with dd-cfDNA fraction ≥0.15% as AR yielded 78.5% sensitivity (95% CI, 60.7%-96.3%) and 76.9% specificity (95% CI, 71.1%-82.7%). Positive and negative predictive values were 25.1% (95% CI, 18.8%-31.5%) and 97.3% (95% CI, 95.1%-99.5%) respectively, calculated using the cohort AR prevalence of 9.0% (95% CI, 5.3%-12.8%) with adjustment for repeat samples. CONCLUSIONS: This novel dd-cfDNA test detects AR in HTx recipients with good accuracy and holds promise as a noninvasive test for AR in HTx recipients.


Subject(s)
Cell-Free Nucleic Acids , Heart Transplantation , Adult , Biomarkers , Graft Rejection/genetics , Humans , Tissue Donors
9.
Transplant Direct ; 8(4): e1317, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35372675

ABSTRACT

Background: Lung transplant patients are vulnerable to various forms of allograft injury, whether from acute rejection (AR) (encompassing acute cellular rejection [ACR] and antibody-mediated rejection [AMR]), chronic lung allograft dysfunction (CLAD), or infection (INFXN). Previous research indicates that donor-derived cell-free DNA (dd-cfDNA) is a promising noninvasive biomarker for the detection of AR and allograft injury. Our aim was to validate a clinical plasma dd-cfDNA assay for detection of AR and other allograft injury and to confirm and expand on dd-cfDNA and allograft injury associations observed in previous studies. Methods: We measured dd-cfDNA fraction using a novel single-nucleotide polymorphism-based assay in prospectively collected plasma samples paired with clinical-pathologic diagnoses. dd-cfDNA fraction was compared across clinical-pathologic cohorts: stable, ACR, AMR, isolated lymphocytic bronchiolitis, CLAD/neutrophilic-responsive allograft dysfunction (NRAD), and INFXN. Performance characteristics were calculated for AR and combined allograft injury (AR + CLAD/NRAD + INFXN) versus the stable cohort. Results: The study included 195 samples from 103 patients. Median dd-cfDNA fraction was significantly higher for ACR (1.43%, interquartile range [IQR]: 0.67%-2.32%, P = 5 × 10-6), AMR (2.50%, IQR: 2.06%-3.79%, P = 2 × 10-5), INFXN (0.74%, IQR: 0.46%-1.38%, P = 0.02), and CLAD/NRAD (1.60%, IQR: 0.57%-2.60%, P = 1.4 × 10-4) versus the stable cohort. Area under the receiver operator characteristic curve for AR versus stable was 0.91 (95% confidence interval [CI]: 0.83-0.98). Using a ≥1% dd-cfDNA fraction threshold, sensitivity for AR was 89.1% (95% CI: 76.2%-100.0%), specificity 82.9% (95% CI: 73.3%-92.4%), positive predictive value, 51.9% (95% CI: 37.5%-66.3%), and negative predictive value, 97.3% (95% CI: 94.3%-100%). For combined allograft injury area under the receiver operator characteristic curve was 0.76 (95% CI: 0.66-0.85), sensitivity 59.9% (95% CI: 46.0%-73.9%), specificity 83.9% (95% CI: 74.1%-93.7%), positive predictive value, 43.6% (95% CI: 27.6%-59.6%), and negative predictive value, 91.0% (95% CI: 87.9%-94.0%). Conclusions: These results indicate that our dd-cfDNA assay detects AR and other allograft injury. dd-cfDNA monitoring, accompanied by standard clinical assessments, represents a valuable precision tool to support lung transplant health and is appropriate for further assessment in a prospective randomized-controlled study.

10.
Transplant Proc ; 54(6): 1446-1454, 2022.
Article in English | MEDLINE | ID: mdl-35618524

ABSTRACT

BACKGROUND: Kidney transplant (KT) recipients are at high risk for developing severe COVID-19. Lowering immunosuppression levels in KT recipients with COVID-19 encourages native immune responses but can raise the risk of rejection. Donor-derived cell-free DNA (dd-cfDNA), reported as a fraction of total cfDNA, is a proven biomarker for KT rejection. Total cfDNA levels are elevated in patients with COVID-19, which may depress dd-cfDNA fractions, potentially leading to missed rejections. METHODS: A retrospective analysis of 29 KT recipients hospitalized with COVID-19 between April and November 2020 examined total and dd-cfDNA levels. Blood samples were collected after onset of COVID-19, with follow-up samples collected from a subset of patients, when infection had likely subsided. RESULTS: After COVID-19 diagnosis, the median total cfDNA level was elevated (7.9 multiples of median [MoM]). A significant decrease in total cfDNA levels was observed between the first and second time points (6.2 MoM, 1.0 MoM; P <001). A significant positive association was identified between total cfDNA levels and COVID-19 severity (P = .02; R2 = .19). Two patients with biopsy-proven acute cellular rejection had dd-cfDNA fractions below the 1% cutoff for rejection (0.20% and 0.78%), with elevated total cfDNA levels of 7.9 MoM and 41.8 MoM, respectively. CONCLUSIONS: In this preliminary study, total cfDNA levels were elevated in KT patients with COVID-19, subsiding after resolution of infection. High total cfDNA levels may confound dd-cfDNA results, leading to failure to identify rejection. Considering total cfDNA levels is important in interpretation of dd-cfDNA tests for assessment of rejection in KT patients with COVID-19 or other infection.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Kidney Transplantation , Biomarkers , COVID-19 Testing , Graft Rejection , Humans , Kidney Transplantation/adverse effects , Retrospective Studies , SARS-CoV-2 , Tissue Donors
11.
JCO Precis Oncol ; 6: e2100181, 2022 03.
Article in English | MEDLINE | ID: mdl-35263168

ABSTRACT

PURPOSE: Earlier detection of cancer recurrence using circulating tumor DNA (ctDNA) to detect molecular residual disease (MRD) has the potential to dramatically affect cancer management. We review evidence supporting the use of ctDNA as a biomarker for detection of MRD and highlight the potential impact that ctDNA testing could have on the conduct of clinical trials. METHODS: We searched the literature using MEDLINE (via PubMed) for articles from January 1, 2000, focusing on studies that assessed ctDNA as a predictor of cancer recurrence. Broadly focused searches on ctDNA and cancer were also performed to provide additional background information. www.clinialtrials.gov was searched to identify trials that incorporate ctDNA testing. RESULTS: Numerous studies across different cancer types indicate that ctDNA-based MRD detection predicts recurrence with high sensitivity and specificity, and with lead times that precede standard imaging by up to 12 months. Recently, ctDNA testing has started being used to enroll MRD-positive patients at high risk of recurrence into trials, promising gains in statistical power that allow clinical utility to be demonstrated with smaller cohorts. Trials where ctDNA testing based-MRD detection is used to stratify patients into low or high-risk categories for treatment assignment are also ongoing. In addition, there is increasing evidence supporting the use of ctDNA dynamics or clearance as a surrogate end point, which could significantly reduce trial duration. CONCLUSION: ctDNA-based trial enrichment across many cancers seems likely to become increasingly common for cost- and time-reduction benefits. Trial efficiency could also benefit from using ctDNA as a surrogate end point, leading to accelerated approval of new therapeutics. A clear demonstration of efficacy from trials that use ctDNA-based MRD detection to assign treatment could transform clinical practice.


Subject(s)
Circulating Tumor DNA , Circulating Tumor DNA/genetics , Clinical Trials as Topic , Disease Progression , Humans , Neoplasm Recurrence, Local/diagnosis , Neoplasm, Residual/diagnosis
12.
Transplantation ; 106(8): 1690-1697, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35289777

ABSTRACT

BACKGROUND: Pancreas graft status in simultaneous pancreas-kidney transplant (SPKTx) is currently assessed by nonspecific biochemical markers, typically amylase or lipase. Identifying a noninvasive biomarker with good sensitivity in detecting early pancreas graft rejection could improve SPKTx management. METHODS: Here, we developed a pilot study to explore donor-derived cell-free DNA (dd-cfDNA) performance in predicting biopsy-proven acute rejection (P-BPAR) of the pancreas graft in a cohort of 36 SPKTx recipients with biopsy-matched plasma samples. dd-cfDNA was measured using the Prospera test (Natera, Inc.) and reported both as a fraction of the total cfDNA (fraction; %) and as concentration in the recipient's plasma (quantity; copies/mL). RESULTS: In the absence of P-BPAR, dd-cfDNA was significantly higher in samples collected within the first 45 d after SPKTx compared with those measured afterward (median, 1.00% versus 0.30%; median, 128.2 versus 35.3 cp/mL, respectively with both; P = 0.001). In samples obtained beyond day 45, P-BPAR samples presented a significantly higher dd-cfDNA fraction (0.83 versus 0.30%; P = 0.006) and quantity (81.3 versus 35.3 cp/mL; P = 0.001) than stable samples. Incorporating dd-cfDNA quantity along with dd-cfDNA fraction outperformed dd-cfDNA fraction alone to detect active rejection. Notably, when using a quantity cutoff of 70 cp/mL, dd-cfDNA detected P-BPAR with a sensitivity of 85.7% and a specificity of 93.7%, which was more accurate than current biomarkers (area under curve of 0.89 for dd-cfDNA (cp/ml) compared with 0.74 of lipase and 0.46 for amylase). CONCLUSIONS: dd-cfDNA measurement through a simple noninvasive blood test could be incorporated into clinical practice to help inform graft management in SPKTx patients.


Subject(s)
Cell-Free Nucleic Acids , Graft Rejection , Kidney Transplantation , Pancreas Transplantation , Biomarkers , Cell-Free Nucleic Acids/genetics , Graft Rejection/diagnosis , Graft Rejection/genetics , Humans , Kidney Transplantation/adverse effects , Pancreas Transplantation/adverse effects , Pilot Projects , Postoperative Complications , Tissue Donors
13.
Transplant Proc ; 53(10): 2866-2872, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34774309

ABSTRACT

BACKGROUND: Donor-derived cell-free DNA (dd-cfDNA) in plasma is an established noninvasive biomarker for allograft injury and rejection. A single-nucleotide polymorphism (SNP)-based massively multiplexed polymerase chain reaction methodology can be used to quantify dd-cfDNA in kidney transplant recipients. In this study we describe our clinical experience in using a SNP-based dd-cfDNA assay for the management of active rejection in renal transplant recipients. METHODS: To assess the clinical utility of a clinically available SNP-based massively multiplexed polymerase chain reaction dd-cfDNA assay, we analyzed biopsy data contemporaneous to dd-cfDNA results at 33 participating clinics and calculated the rate of rejection in dd-cfDNA-matched biopsy results. RESULTS: A total of 1347 dd-cfDNA test samples from 879 patients were accessioned from October 3, 2019, to November 2, 2020. The dd-cfDNA testing classified 25.2% (340/1347) of samples as high-risk (dd-cfDNA fraction ≥ 1%). Clinical follow-up was available for 32.1% (109/340) of the high-risk results, which included samples from 28 patients with definitive biopsy results within 2 weeks of dd-cfDNA testing. Pathology reports indicated a 64% (18/28) rate of active rejection in biopsy result-matched samples. Total cfDNA measurements indicated a skewed distribution and a correlation with dd-cfDNA-derived patient risk classification. CONCLUSIONS: This is the first report showing the impact of dd-cfDNA on patient management in a multicenter real-world clinical cohort. The data indicate that incorporating dd-cfDNA testing into practice may improve physician decision making regarding renal allograft recipients.


Subject(s)
Cell-Free Nucleic Acids , Kidney Transplantation , Allografts , Graft Rejection/diagnosis , Graft Rejection/genetics , Humans , Kidney Transplantation/adverse effects , Tissue Donors
14.
Obstet Gynecol ; 135(5): 1198-1206, 2020 05.
Article in English | MEDLINE | ID: mdl-32282607

ABSTRACT

OBJECTIVE: To assess the causes of reported discordance between noninvasive prenatal testing (NIPT) and ultrasound or other clinical information. METHODS: In this retrospective, observational study, all cases in which single-nucleotide polymorphism (SNP)-based NIPT reported normal sex chromosomes and the laboratory was notified by the patient or health care provider of discordance between NIPT and observed or expected fetal sex from clinical information were reviewed. When discordances were unresolved after internal and external laboratory clerical data review or repeat ultrasound imaging, additional clinical records, genetic testing results and pregnancy outcomes were reviewed. RESULTS: Of the 1,301,117 eligible NIPT cases, fetal sex discordances were reported in 91 (0.007%; 1:14,300; 95% CI 1:11,600-1:17,800); partial or complete outcome information was available for 83 of 91 cases. In 30 of 83 (36%) cases, karyotyping was performed, and sufficient clinical information was provided to establish the diagnosis of disorders of sexual development. The disorders of sexual development were classified into three categories: 46,XY disorders of sexual development (n=19), 46,XX disorders of sexual development (n=4), and sex chromosome disorders of sexual development (n=7). In 28 of 83 (34%) cases, the cause of the apparent discrepancy was attributable to human error, predominantly phlebotomy labeling or ultrasound misassignment. In 25 of 83 cases, a diagnosis was not possible; the outcome reported was either abnormal (18/83, 22%) or no abnormalities were reported (7/83, 8%). When normal sex chromosomes were predicted by SNP-based NIPT and clinical information was discordant, disorders of sexual development were common. Internal laboratory clerical data review and re-imaging confirmed the NIPT fetal sex reports in 34% cases, providing reassurance that no further evaluation was necessary. CONCLUSION: Identification of apparent fetal sex discordances with NIPT results, and reporting this suspicion to the laboratory, provides an opportunity for further evaluation to identify the cause of apparent discordances and the involvement of a multi-disciplinary team, as necessary to prepare for postnatal care. We propose a protocol for evaluation of these cases. FUNDING SOURCE: This study was funded by Natera, Inc.


Subject(s)
Diagnostic Errors/statistics & numerical data , Disorders of Sex Development/diagnosis , Noninvasive Prenatal Testing/statistics & numerical data , Sex Determination Analysis/statistics & numerical data , Ultrasonography, Prenatal/statistics & numerical data , Adult , Disorders of Sex Development/embryology , Disorders of Sex Development/genetics , Female , Humans , Karyotyping , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy Outcome , Prospective Studies , Reproducibility of Results , Retrospective Studies , Sex Determination Analysis/methods
15.
Transplantation ; 103(12): 2657-2665, 2019 12.
Article in English | MEDLINE | ID: mdl-30801536

ABSTRACT

BACKGROUND: Early detection of rejection in kidney transplant recipients holds the promise to improve clinical outcomes. Development and implementation of more accurate, noninvasive methods to detect allograft rejection remain an ongoing challenge. The limitations of existing allograft surveillance methods present an opportunity for donor-derived cell-free DNA (dd-cfDNA), which can accurately and rapidly differentiate patients with allograft rejection from patients with stable organ function. METHODS: This study evaluated the analytical performance of a massively multiplexed polymerase chain reaction assay that targets 13 962 single-nucleotide polymorphisms, characterized and validated using 66 unique samples with 1064 replicates, including cell line-derived reference samples, plasma-derived mixtures, and transplant patient samples. The dd-cfDNA fraction was quantified in both related and unrelated donor-recipient pairs. RESULTS: The dd-cfDNA assay showed a limit of blank of 0.11%, a limit of detection and limit of quantitation of 0.15% for unrelated donors, and limit of blank of 0.23%, a limit of detection and limit of quantitation of 0.29% for related donors. All other metrics (linearity, accuracy, and precision) were observed to be equivalent between unrelated and related donors. The measurement precision of coefficient of variation was 1.8% (repeatability, 0.6% dd-cfDNA) and was <5% for all the different reproducibility measures. CONCLUSIONS: This study validates the performance of a single-nucleotide polymorphism-based massively multiplexed polymerase chain reaction assay to detect the dd-cfDNA fraction with improved precision over currently available tests, regardless of donor-recipient relationships.


Subject(s)
Cell-Free Nucleic Acids/genetics , Graft Rejection/genetics , Kidney Transplantation , Polymorphism, Single Nucleotide , Tissue Donors , Transplant Recipients , Allografts , Biomarkers/blood , Cell-Free Nucleic Acids/blood , Female , Graft Rejection/blood , Graft Rejection/diagnosis , Humans , Male , Reproducibility of Results
16.
J Clin Med ; 8(7)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261782

ABSTRACT

We analyzed maternal plasma cell-free DNA samples from twin pregnancies in a prospective blinded study to validate a single-nucleotide polymorphism (SNP)-based non-invasive prenatal test (NIPT) for zygosity, fetal sex, and aneuploidy. Zygosity was evaluated by looking for either one or two fetal genome complements, fetal sex was evaluated by evaluating Y-chromosome loci, and aneuploidy was assessed through SNP ratios. Zygosity was correctly predicted in 100% of cases (93/93; 95% confidence interval (CI) 96.1%-100%). Individual fetal sex for both twins was also called with 100% accuracy (102/102; 95% weighted CI 95.2%-100%). All cases with copy number truth were also correctly identified. The dizygotic aneuploidy sensitivity was 100% (10/10; 95% CI 69.2%-100%), and overall specificity was 100% (96/96; 95% weighted CI, 94.8%-100%). The mean fetal fraction (FF) of monozygotic twins (n = 43) was 13.0% (standard deviation (SD), 4.5%); for dizygotic twins (n = 79), the mean lower FF was 6.5% (SD, 3.1%) and the mean higher FF was 8.1% (SD, 3.5%). We conclude SNP-based NIPT for zygosity is of value when chorionicity is uncertain or anomalies are identified. Zygosity, fetal sex, and aneuploidy are complementary evaluations that can be carried out on the same specimen as early as 9 weeks' gestation.

17.
PLoS One ; 13(2): e0193476, 2018.
Article in English | MEDLINE | ID: mdl-29474437

ABSTRACT

INTRODUCTION: Non-invasive prenatal testing (NIPT) for aneuploidy using cell-free DNA in maternal plasma has been widely adopted. Recently, NIPT coverage has expanded to detect subchromosomal abnormalities including the 22q11.2 deletion. Validation of a SNP-based NIPT for detection of 22q11.2 deletions demonstrating a high sensitivity (97.8%) and specificity (99.75%) has been reported. We sought to further demonstrate the performance of a revised version of the test in a larger set of pregnancy plasma samples. METHODS: Blood samples from pregnant women (10 with 22q11.2-deletion‒affected fetuses and 390 negative controls) were successfully analyzed using a revised SNP-based NIPT for the 22q11.2 deletion. The sensitivity and specificity of the assay were measured. RESULTS: Sensitivity of the assay was 90% (9/10), and specificity of the assay was 99.74% (389/390), with a corresponding false positive-rate of 0.26%. DISCUSSION: The data presented in this study add to the growing body of evidence demonstrating the ability of the SNP-based NIPT to detect 22q11.2 deletions with high sensitivity and specificity.


Subject(s)
Chromosome Deletion , Genetic Testing/methods , Mothers , Plasma/metabolism , Polymorphism, Single Nucleotide , Prenatal Diagnosis/methods , Adult , Chromosomes, Human, Pair 22 , Female , Humans , Pregnancy
18.
Fertil Steril ; 110(1): 113-121, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29908770

ABSTRACT

OBJECTIVE: To measure in vitro fertilization (IVF) outcomes following 24-chromosome single‒nucleotide-polymorphism (SNP)-based preimplantation genetic testing for aneuploidy (PGT-A) and euploid embryo transfer. DESIGN: Retrospective. SETTING: Fertility clinics and laboratory. PATIENT(S): Women 20-46 years of age undergoing IVF treatment. INTERVENTION(S): Twenty-four-chromosome SNP-based PGT-A of day 5/6 embryo biopsies. MAIN OUTCOME MEASURE(S): Maternal age-stratified implantation, clinical pregnancy, and live birth rates per embryo transfer; miscarriage rates; and number of embryo transfers per patient needed to achieve a live birth. RESULT(S): An implantation rate of 69.9%, clinical pregnancy rate per transfer of 70.6%, and live birth rate per transfer of 64.5% were observed in 1,621 nondonor frozen cycles with the use of SNP-based PGT-A. In addition, SNP-based PGT-A outcomes, when measured per cycle with transfer, remained relatively constant across all maternal ages; when measured per cycle initiated, they decreased as maternal age increased. Miscarriage rates were ∼5% in women ≤40 years old. No statistically significant differences in pregnancy outcomes were found for single-embryo transfers (SET) versus double-embryo transfers with SNP-based PGT-A. On average, 1.38 embryo transfers per patient were needed to achieve a live birth in nondonor cycles. CONCLUSION(S): Our findings that SNP-based PGT-A can mitigate the negative effects of maternal age on IVF outcomes in cycles with transfer, and that pregnancy outcomes from SET cycles are not significantly different from those of double-embryo transfer cycles, support the use of SET when transfers are combined with SNP-based PGT-A.


Subject(s)
Aneuploidy , Fertilization in Vitro/statistics & numerical data , Genetic Testing , Polymorphism, Single Nucleotide , Pregnancy Outcome/epidemiology , Preimplantation Diagnosis , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/genetics , Adult , Chromosomes, Human , Comparative Genomic Hybridization/methods , Comparative Genomic Hybridization/statistics & numerical data , Female , Genetic Testing/methods , Genetic Testing/statistics & numerical data , Humans , Middle Aged , Pregnancy , Pregnancy Outcome/genetics , Pregnancy Rate , Preimplantation Diagnosis/adverse effects , Preimplantation Diagnosis/methods , Preimplantation Diagnosis/statistics & numerical data , Young Adult
19.
J Clin Med ; 8(1)2018 Dec 23.
Article in English | MEDLINE | ID: mdl-30583588

ABSTRACT

Standard noninvasive methods for detecting renal allograft rejection and injury have poor sensitivity and specificity. Plasma donor-derived cell-free DNA (dd-cfDNA) has been reported to accurately detect allograft rejection and injury in transplant recipients and shown to discriminate rejection from stable organ function in kidney transplant recipients. This study used a novel single nucleotide polymorphism (SNP)-based massively multiplexed PCR (mmPCR) methodology to measure dd-cfDNA in various types of renal transplant recipients for the detection of allograft rejection/injury without prior knowledge of donor genotypes. A total of 300 plasma samples (217 biopsy-matched: 38 with active rejection (AR), 72 borderline rejection (BL), 82 with stable allografts (STA), and 25 with other injury (OI)) were collected from 193 unique renal transplant patients; dd- cfDNA was processed by mmPCR targeting 13,392 SNPs. Median dd-cfDNA was significantly higher in samples with biopsy-proven AR (2.3%) versus BL (0.6%), OI (0.7%), and STA (0.4%) (p < 0.0001 all comparisons). The SNP-based dd-cfDNA assay discriminated active from non-rejection status with an area under the curve (AUC) of 0.87, 88.7% sensitivity (95% CI, 77.7⁻99.8%) and 72.6% specificity (95% CI, 65.4⁻79.8%) at a prespecified cutoff (>1% dd-cfDNA). Of 13 patients with AR findings at a routine protocol biopsy six-months post transplantation, 12 (92%) were detected positive by dd-cfDNA. This SNP-based dd-cfDNA assay detected allograft rejection with superior performance compared with the current standard of care. These data support the feasibility of using this assay to detect disease prior to renal failure and optimize patient management in the case of allograft injury.

20.
Mol Cytogenet ; 10: 6, 2017.
Article in English | MEDLINE | ID: mdl-28293297

ABSTRACT

BACKGROUND: The 22q11.2 deletion syndrome is the most common microdeletion syndrome in livebirths, but data regarding its incidence in other populations is limited and also include ascertainment bias. This study was designed to determine the incidence of the 22q11.2 deletion in miscarriage samples sent for clinical molecular cytogenetic testing. RESULTS: Twenty-six thousand one hundred one fresh product of conception (POC) samples were sent to a CLIA- certified, CAP-accredited laboratory from April 2010--May 2016 for molecular cytogenetic miscarriage testing using a single-nucleotide polymorphism (SNP)-based microarray platform. A retrospective review determined the incidence of the 22q11.2 deletion in this sample set. Fetal results were obtained in 22,451 (86%) cases, of which, 15 (0.07%) had a microdeletion in the 22q11.2 region (incidence, 1/1497). Of those, 12 (80%) cases were found in samples that were normal at the resolution of traditional karyotyping (i.e., had no chromosome abnormalities above 10 Mb in size) and three (20%) cases had additional findings (Trisomy 15, Trisomy 16, XXY). Ten (67%) cases with a 22q11.2 deletion had the common ~3 Mb deletion; the remaining 5 cases had deletions ranging in size from 0.65 to 1.5 Mb. A majority (12/15) of cases had a deletion on the maternally inherited chromosome. No significant relationship between maternal age and presence of a fetal 22q11.2 deletion was observed. CONCLUSIONS: The observed incidence of 1/1497 for the 22q11.2 deletion in miscarriage samples is higher than the reported general population prevalence (1/4000-1/6000). Further research is needed to determine whether the 22q11.2 deletion is a causal factor for miscarriage.

SELECTION OF CITATIONS
SEARCH DETAIL