Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
1.
Cell ; 187(12): 3056-3071.e17, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848678

ABSTRACT

The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.


Subject(s)
Homeostasis , Intestinal Mucosa , Receptors, G-Protein-Coupled , Regeneration , Stem Cells , Animals , Stem Cells/metabolism , Stem Cells/cytology , Mice , Intestinal Mucosa/metabolism , Receptors, G-Protein-Coupled/metabolism , Intestines/cytology , Cell Differentiation , Mice, Inbred C57BL , Epithelial Cells/metabolism , Single-Cell Analysis , Male
2.
PLoS Genet ; 19(2): e1010629, 2023 02.
Article in English | MEDLINE | ID: mdl-36787291

ABSTRACT

Pharmacological vitamin C (VC) is a potential natural compound for cancer treatment. However, the mechanism underlying its antitumor effects remains unclear. In this study, we found that pharmacological VC significantly inhibits the mTOR (including mTORC1 and mTORC2) pathway activation and promotes GSK3-FBXW7-mediated Rictor ubiquitination and degradation by increasing the cellular ROS. Moreover, we identified that HMOX1 is a checkpoint for pharmacological-VC-mediated mTOR inactivation, and the deletion of FBXW7 or HMOX1 suppresses the regulation of pharmacological VC on mTOR activation, cell size, cell viability, and autophagy. More importantly, it was observed that the inhibition of mTOR by pharmacological VC supplementation in vivo produces positive therapeutic responses in tumor growth, while HMOX1 deficiency rescues the inhibitory effect of pharmacological VC on tumor growth. These results demonstrate that VC influences cellular activities and tumor growth by inhibiting the mTOR pathway through Rictor and HMOX1, which may have therapeutic potential for cancer treatment.


Subject(s)
Ascorbic Acid , Neoplasms , Humans , F-Box-WD Repeat-Containing Protein 7/metabolism , Ascorbic Acid/pharmacology , Glycogen Synthase Kinase 3/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Transcription Factors/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
3.
Genet Epidemiol ; 48(1): 27-41, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37970963

ABSTRACT

Mendelian randomization (MR) is a statistical method that utilizes genetic variants as instrumental variables (IVs) to investigate causal relationships between risk factors and outcomes. Although MR has gained popularity in recent years due to its ability to analyze summary statistics from genome-wide association studies (GWAS), it requires a substantial number of single nucleotide polymorphisms (SNPs) as IVs to ensure sufficient power for detecting causal effects. Unfortunately, the complex genetic heritability of many traits can lead to the use of invalid IVs that affect both the risk factor and the outcome directly or through an unobserved confounder. This can result in biased and imprecise estimates, as reflected by a larger mean squared error (MSE). In this study, we focus on the widely used two-stage least squares (2SLS) method and derive formulas for its bias and MSE when estimating causal effects using invalid IVs. Using those formulas, we identify conditions under which the 2SLS estimate is unbiased and reveal how the independent or correlated pleiotropic effects influence the accuracy and precision of the 2SLS estimate. We validate these formulas through extensive simulation studies and demonstrate the application of those formulas in an MR study to evaluate the causal effect of the waist-to-hip ratio on various sleeping patterns. Our results can aid in designing future MR studies and serve as benchmarks for assessing more sophisticated MR methods.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Mendelian Randomization Analysis/methods , Models, Genetic , Risk Factors , Causality , Bias
4.
J Cell Mol Med ; 28(10): e18280, 2024 May.
Article in English | MEDLINE | ID: mdl-38758159

ABSTRACT

Acute lung injury (ALI) is featured with a robust inflammatory response. Angiopoietin-like protein 2 (ANGPTL2), a pro-inflammatory protein, is complicated with various disorders. However, the role of ANGPTL2 in ALI remains to be further explored. The mice and MH-S cells were administrated with lipopolysaccharide (LPS) to evoke the lung injury in vivo and in vitro. The role and mechanism of ANGPTL was investigated by haematoxylin-eosin, measurement of wet/dry ratio, cell count, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling, reverse transcription quantitative polymerase chain reaction, immunofluorescence, enzyme-linked immunosorbent assay, detection of autophagic flux and western blot assays. The level of ANGPTL2 was upregulated in lung injury. Knockout of ANGPTL2 alleviated LPS-induced pathological symptoms, reduced pulmonary wet/dry weight ratio, the numbers of total cells and neutrophils in BALF, apoptosis rate and the release of pro-inflammatory mediators, and modulated polarization of alveolar macrophages in mice. Knockdown of ANGPTL2 downregulated the level of pyroptosis indicators, and elevated the level of autophagy in LPS-induced MH-S cells. Besides, downregulation of ANGPTL2 reversed the LPS-induced the expression of leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) and triggering receptor expressed on myeloid cells 2 (TREM2), which was reversed by the overexpression of LILRB2. Importantly, knockdown of TREM2 reversed the levels of autophagy- and pyroptosis-involved proteins, and the contents of pro-inflammatory factors in LPS-induced MH-S cells transfected with si ANGPTL2, which was further inverted with the treatment of rapamycin. Therefore, ANGPTL2 silencing enhanced autophagy to alleviate alveolar macrophage pyroptosis via reducing LILRB2-mediated inhibition of TREM2.


Subject(s)
Acute Lung Injury , Angiopoietin-Like Protein 2 , Autophagy , Macrophages, Alveolar , Pyroptosis , Receptors, Immunologic , Animals , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Autophagy/genetics , Gene Knockdown Techniques , Lipopolysaccharides , Macrophages, Alveolar/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Pyroptosis/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics
5.
Neurobiol Dis ; 193: 106457, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423191

ABSTRACT

Epilepsy is a brain disorder affecting up to 1 in 26 individuals. Despite its clinical importance, the molecular mechanisms of epileptogenesis are still far from clarified. Our previous study showed that disruption of Clock in excitatory neurons alters cortical circuits and leads to generation of focal epilepsy. In this study, a GAD-Cre;Clockflox/flox mouse line with conditional Clock gene knockout in inhibitory neurons was established. We observed that seizure latency was prolonged, the severity and mortality of pilocarpine-induced seizure were significantly reduced, and memory was improved in GAD-Cre;Clockflox/flox mice. We hypothesize that mice with CLOCK knockout in inhibitory neurons have increased threshold for seizure, opposite from mice with CLOCK knockout in excitatory neurons. Further investigation showed Clock knockout in inhibitory neurons upregulated the basal protein level of ARC, a synaptic plasticity-associated immediate-early gene product, likely through the BDNF-ERK pathway. Altered basal levels of ARC may play an important role in epileptogenesis after Clock deletion in inhibitory neurons. Although sEPSCs and intrinsic properties of layer 5 pyramidal neurons in the somatosensory cortex exhibit no changes, the spine density increased in apical dendrite of pyramidal neurons in CLOCK knockout group. Our results suggest an underlying mechanism by which the circadian protein CLOCK in inhibitory neurons participates in neuronal activity and regulates the predisposition to epilepsy.


Subject(s)
Epilepsy , Animals , Mice , Anxiety , Disease Susceptibility/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Mice, Knockout , Neurons/metabolism , Seizures/metabolism
6.
Bioinformatics ; 39(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36964712

ABSTRACT

MOTIVATION: Researchers usually conduct statistical analyses based on models built on raw data collected from individual participants (individual-level data). There is a growing interest in enhancing inference efficiency by incorporating aggregated summary information from other sources, such as summary statistics on genetic markers' marginal associations with a given trait generated from genome-wide association studies. However, combining high-dimensional summary data with individual-level data using existing integrative procedures can be challenging due to various numeric issues in optimizing an objective function over a large number of unknown parameters. RESULTS: We develop a procedure to improve the fitting of a targeted statistical model by leveraging external summary data for more efficient statistical inference (both effect estimation and hypothesis testing). To make this procedure scalable to high-dimensional summary data, we propose a divide-and-conquer strategy by breaking the task into easier parallel jobs, each fitting the targeted model by integrating the individual-level data with a small proportion of summary data. We obtain the final estimates of model parameters by pooling results from multiple fitted models through the minimum distance estimation procedure. We improve the procedure for a general class of additive models commonly encountered in genetic studies. We further expand these two approaches to integrate individual-level and high-dimensional summary data from different study populations. We demonstrate the advantage of the proposed methods through simulations and an application to the study of the effect on pancreatic cancer risk by the polygenic risk score defined by BMI-associated genetic markers. AVAILABILITY AND IMPLEMENTATION: R package is available at https://github.com/fushengstat/MetaGIM.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Genotype , Genetic Markers , Genome-Wide Association Study/methods , Phenotype
7.
J Nutr ; 154(6): 1790-1802, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636707

ABSTRACT

BACKGROUND: Stanniocalcin 2 (STC2), a glycoprotein hormone, is extensively expressed in various organs and tissues, particularly in the mammary gland. STC2 plays a crucial role in enabling cells to adapt to stress conditions and avert apoptosis. The efficiency of milk production is closely linked to both the quantity and quality of mammary cells. Yet, there remains a dearth of research on the impact of STC2 on mammary cells' activity in dairy cows. OBJECTIVES: The objective of this study was to investigate the effects of STC2 on the viability of mammary epithelial cells in dairy cows and to elucidate the underlying mechanisms. METHODS: First, the Gene Expression Profiling and Interactive Analysis database was employed to perform survival analysis on STC2 expression in relation to prognosis using The Cancer Genome Atlas and GETx data. Subsequently, the basic physical and chemical properties, gene expression, and potential signaling pathways involved in the growth of dairy cow mammary epithelial cells were determined using STC2 knockdown. RESULTS: STC2 knockdown significantly suppressed autophagy in mammary epithelial cells of dairy cows. Moreover, STC2 knockdown upregulated glutathione peroxidase 4 protein expression, elicited an elevation in lipid ROS concentrations, and inhibited the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, consequently repressing downstream genes involved in lipid synthesis regulated by mTORC1 and ultimately inducing ferroptosis. CONCLUSIONS: The findings of our study suggest that STC2 suppresses autophagy and ferroptosis through the activation of mTORC1. Mechanically, STC2 exerts an inhibitory effect on ferroptosis by activating antioxidative stress-related proteins, such as glutathione peroxidase 4, to suppress lipid ROS production and stimulating the mTORC1 signaling pathway to enhance the expression of genes associated with lipid synthesis.


Subject(s)
Autophagy , Epithelial Cells , Ferroptosis , Glycoproteins , Mammary Glands, Animal , Mechanistic Target of Rapamycin Complex 1 , Animals , Cattle , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Epithelial Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Ferroptosis/drug effects , Ferroptosis/physiology , Glycoproteins/metabolism , Glycoproteins/genetics , Signal Transduction
8.
J Org Chem ; 89(12): 9139-9143, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861494

ABSTRACT

Conjugated ynones represent an important class of reactive species, useful synthetic intermediates, and synthons. However, the reactivity and synthetic applications of ynones are usually focused on the transformation of mono- or dual-functional groups. Herein, we developed a straightforward synthesis of pyridin-2(1H)-imines from the transformation of conjugated ynones. This cascade process probably began with a Michael addition of ynones and 2-aminopyridines, further underwent an intramolecular cyclization to generate the N,O-bidentate intermediates, and finally reacted with sulfonyl azides giving the pyridin-2(1H)-imines with accompanying loss of diazo.

9.
Phys Chem Chem Phys ; 26(5): 3869-3879, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38226609

ABSTRACT

Rare-earth-doped silica-based composite glasses (Re-SCGs) are widely used as high-quality laser gain media in defense, aerospace, energy, power, and medical applications. The variable regional chemical environments of Re-SCGs can induce new photoluminescence properties of rare-earth ions but can cause the selective aggregation of rare-earth ions, limiting the application of Re-SCGs in the field of high-power lasers. Here, topological engineering is proposed to adjust the degree of cross-linking of phase-separation network chains in Re-SCGs. A combination of experimental and theoretical characterization techniques suggested that the selective aggregation of rare-earth ions originates from the formation of phase-separated structures in glasses. The decomposition of nanoscale phase separation structures to the sub-nanometer scale, enabled by incorporating Al3+ ions, not only maintains the high luminescence efficiency of rare earth ions but also increases light transmittance and reduces light scattering. Furthermore, our investigation encompassed the exploration of the inhibitory mechanism of Al3+ ions on phase-separation structures, as well as their influence on the spectral characteristics of Re-SCGs. This work provides a new design concept for composite glass materials doped with rare-earth ions and could broaden their application in the field of high-power lasers.

10.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34260404

ABSTRACT

Epitope III, a highly conserved amino acid motif of 524APTYSW529 on the hepatitis C virus (HCV) E2 glycoprotein, resides in the critical loop that binds to the host receptor CD81, thus making it one of the most important antibody targets for blocking HCV infections. Here, we have determined the X-ray crystal structure of epitope III at a 2.0-Å resolution when it was captured by a site-specific neutralizing antibody, monoclonal antibody 1H8 (mAb1H8). The snapshot of this complex revealed that epitope III has a relatively rigid structure when confined in the binding grooves of mAb1H8, which confers the residue specificity at both ends of the epitope. Such a high shape complementarity is reminiscent of the "lock and key" mode of action, which is reinforced by the incompatibility of an antibody binding with an epitope bearing specific mutations. By subtly positioning the side chains on the three residues of Tyr527, Ser528, and Trp529 while preserving the spatial rigidity of the rest, epitope III in this cocrystal complex adopts a unique conformation that is different from previously described E2 structures. With further analyses of molecular docking and phage display-based peptide interactions, we recognized that it is the arrangements of two separate sets of residues within epitope III that create these discrete conformations for the epitope to interact selectively with either mAb1H8 or CD81. These observations thus raise the possibility that local epitope III conformational dynamics, in conjunction with sequence variations, may act as a regulatory mechanism to coordinate "mAb1H8-like" antibody-mediated immune defenses with CD81-initiated HCV infections.


Subject(s)
Conserved Sequence , Epitopes/immunology , Hepacivirus/immunology , Neutralization Tests , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Amino Acid Sequence , Antibodies, Monoclonal/chemistry , Epitopes/chemistry , Humans , Molecular Docking Simulation , Peptides/chemistry , Protein Binding , Protein Conformation , Structural Homology, Protein , Tetraspanin 28/metabolism
11.
BMC Biol ; 21(1): 274, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012718

ABSTRACT

BACKGROUND: Aedes aegypti (Ae. aegypti) is the major vector that transmits many diseases including dengue, Zika, and filariasis in tropical and subtropical regions. Due to the growing resistance to chemical-based insecticides, biological control methods have become an emerging direction to control mosquito populations. The sterile insect technique (SIT) deploys high doses of ionizing radiation to sterilize male mosquitoes before the release. The Wolbachia-based population suppression method of the incompatible insect technique (IIT) involves the release of Wolbachia-infected males to sterilize uninfected field females. Due to the lack of perfect sex separation tools, a low percentage of female contamination is detected in the male population. To prevent the unintentional release of these Wolbachia-infected females which might result in population replacement, a low dose of X-ray irradiation is deployed to sterilize any female escapees. However, it remains unclear whether these irradiation-induced male and female sterilizations share common mechanisms. RESULTS: In this work, we set out to define the minimum dose of X-ray radiation required for complete female sterilization in Ae. aegypti (NEA-EHI strain). Further results showed that this minimum dose of X-ray irradiation for female sterilization significantly reduced male fertility. Similar results have been reported previously in several operational trials. By addressing the underlying causes of the sterility, our results showed that male sterility is likely due to chromosomal damage in the germ cells induced by irradiation. In contrast, female sterility appears to differ and is likely initiated by the elimination of the somatic supporting cells, which results in the blockage of the ovariole maturation. Building upon these findings, we identified the minimum dose of X-ray irradiation on the Wolbachia-infected NEA-EHI (wAlbB-SG) strain, which is currently being used in the IIT-SIT field trial. Compared to the uninfected parental strain, a lower irradiation dose could fully sterilize wAlbB-SG females. This suggests that Wolbachia-carrying mosquitoes are more sensitive to irradiation, consistent with a previous report showing that a lower irradiation dose fully sterilized Wolbachia-infected Ae. aegypti females (Brazil and Mexican strains) compared to those uninfected controls. CONCLUSIONS: Our findings thus reveal the distinct mechanisms of ionizing X-ray irradiation-induced male or female sterility in Ae. aegypti mosquitoes, which may help the design of X-ray irradiation-based vector control methods.


Subject(s)
Aedes , Infertility, Female , Wolbachia , Zika Virus Infection , Zika Virus , Humans , Animals , Male , Female , X-Rays , Mosquito Vectors , Mosquito Control/methods , Insecta
12.
Chem Biodivers ; 21(6): e202400463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38606752

ABSTRACT

One novel compound, (R)-3, 6-diethoxy-4-hydroxycyclohex-3-en-1-one (1) and thirteen known compounds were isolated from the waste tobacco leaves. The structures of two compounds (1-2) were confirmed and attributed firstly by the extensive spectroscopic data, including 1D/2D NMR, IR, HR-ESI-MS, CD, and ECD spectra. Notably, seven compounds (2, 3, 9, 10, 11, 12, and 13) exhibited better tyrosinase inhibitory activity than the positive control kojic acid. The binding modes of these compounds revealed that their structure formed strong hydrogen bonds and van der Waals forces with the active sites of tyrosinase. These results indicated that waste tobacco leaves are good resources for developing tyrosinase inhibitors.


Subject(s)
Enzyme Inhibitors , Monophenol Monooxygenase , Nicotiana , Plant Leaves , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Plant Leaves/chemistry , Nicotiana/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation
13.
J Arthroplasty ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004384

ABSTRACT

BACKGROUND: In total joint arthroplasty patients, intraoperative hypothermia (IOH) is associated with perioperative complications and an increased economic burden. Previous models have some limitations and mainly focus on regression modeling. Random forest (RF) algorithms and decision tree modeling are effective for eliminating irrelevant features and making predictions that aid in accelerating modeling and reducing application difficulty. METHODS: We conducted this prospective observational study using convenience sampling and collected data from 327 total joint arthroplasty patients in a tertiary hospital from March 4, 2023 to September 11, 2023. Of those, 229 patients were assigned to the training and 98 to the testing sets. The Chi-square, Mann-Whitney U, and t-tests were used for baseline analyses. The feature variables selection used the RF algorithms, and the decision tree model was trained on 299 examples and validated on 98. The sensitivity, specificity, recall, F1 score, and area under the curve (AUC) were used to test the model's performance. RESULTS: The RF algorithms identified the preheating time, the volume of flushing fluids, the intraoperative infusion volume, the anesthesia time, the surgical time, and the core temperature after intubation as risk factors for IOH. The decision tree was grown to five levels with nine terminal nodes. The overall incidence of IOH was 42.13%. The sensitivity, specificity, recall, F1 score, and AUC were 0.651, 0.907, 0.916, 0.761, and 0.810, respectively. The model indicated strong internal consistency and predictive ability. CONCLUSIONS: The preheating time, the volume of flushing fluids, the intraoperative infusion volume, the anesthesia time, the surgical time, and the core temperature after intubation could accurately predict IOH in total joint arthroplasty patients. By monitoring these factors, the clinical staff could achieve early detection and intervention of IOH in total joint arthroplasty patients.

14.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256133

ABSTRACT

Paeonia ostii 'Feng Dan' is widely cultivated in China for its ornamental, medicinal, and edible properties. The whole plant of tree peony is rich in bioactive substances, while the comprehensive understanding of metabolites in the leaves is limited. In this study, an untargeted metabolomics strategy based on UPLC-ESI-TOF-MS was conducted to analyze the dynamic variations of bioactive metabolites in P. ostii 'Feng Dan' leaves during development. A total of 321 metabolites were rapidly annotated based on the GNPS platform, in-house database, and publications. To accurately quantify the selected metabolites, a targeted method of HPLC-ESI-QQQ-MS was used. Albiflorin, paeoniflorin, pentagalloylglucose, luteolin 7-glucoside, and benzoylpaeoniflorin were recognized as the dominant bioactive compounds with significant content variations during leaf development. Metabolite variations during the development of P. ostii 'Feng Dan' leaves are greatly attributed to the variations in antioxidant activities. Among all tested bacteria, the leaf extract exhibited exceptional inhibitory effects against Streptococcus hemolytis-ß. This research firstly provides new insights into tree peony leaves during development. The stages of S1-S2 may be the most promising harvesting time for potential use in food or pharmaceutical purposes.


Subject(s)
Paeonia , China , Databases, Factual , Food , Liquid Chromatography-Mass Spectrometry
15.
J Nutr ; 153(7): 1930-1943, 2023 07.
Article in English | MEDLINE | ID: mdl-37182694

ABSTRACT

BACKGROUND: The glucose requirement of dairy cows is mainly met by increasing the rate of hepatic gluconeogenesis. However, due to negative energy balance, the liver of periparturient cows is under oxidative stress induced by lipid over-mobilization, and hepatic gluconeogenesis is reduced. Studies have demonstrated that resveratrol, which is widely known for its antioxidant properties, can alter hepatic gluconeogenesis. However, it is not clear whether resveratrol could regulate hepatic gluconeogenesis by its antioxidant properties. OBJECTIVES: This study aims to investigate the precise effect of resveratrol in hepatic gluconeogenesis, the role of resveratrol on hydrogen peroxide (H2O2)-induced oxidative stress in hepatocytes and the potential mechanism using primary hepatocytes. METHODS: Primary hepatocytes were isolated from 5 healthy Holstein calves (1 d old, 30 to 40 kg, fasted) and treated with different concentrations of resveratrol (0, 5, 10, 25, or 50 µM) combined with or without H2O2 (0, 100, or 200 µM) induction for 12 h. RESULTS: Resveratrol enhanced the expression of gluconeogenic genes of calf hepatocytes in a dose-dependent manner (P < 0.05). Conversely, H2O2 suppressed the expression of gluconeogenic genes and induced oxidative stress (P < 0.05), which was improved by resveratrol in calf hepatocytes (P < 0.001). Furthermore, the mechanistic target of rapamycin complex 2 (mTORC2)-AKT pathway was found to negatively regulate gluconeogenesis. An AKT inhibitor was used to assess the role of the mTORC2-AKT pathway in the effects of resveratrol. The results showed resveratrol promoted hepatic gluconeogenesis by inhibiting the mTORC2-AKT pathway. Moreover, sestrin 2 (SESN2) upregulated the activity of mTORC2. We further found that resveratrol decreased SESN2 levels (P < 0.001). CONCLUSIONS: This study indicated that resveratrol enhances the gluconeogenic capacity of calf hepatocytes by improving H2O2-induced oxidative stress and modulating the activity of the SESN2-mTORC2-AKT pathway, implying that resveratrol may be a promising target for ameliorating liver oxidative stress in transition cows.


Subject(s)
Gluconeogenesis , Proto-Oncogene Proteins c-akt , Female , Animals , Cattle , Resveratrol/pharmacology , Resveratrol/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Hydrogen Peroxide , Hepatocytes , Liver/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism
16.
Mol Cell ; 58(5): 804-18, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25936802

ABSTRACT

mTORC1 is essential for regulating cell growth and metabolism in response to various environmental stimuli. Heterodimeric Rag GTPases are required for amino-acid-mediated mTORC1 activation at the lysosome. However, the mechanism by which amino acids regulate Rag activation remains not fully understood. Here, we identified the lysosome-anchored E3 ubiquitin ligase RNF152 as an essential negative regulator of the mTORC1 pathway by targeting RagA for K63-linked ubiquitination. RNF152 interacts with and ubiquitinates RagA in an amino-acid-sensitive manner. The mutation of RagA ubiquitination sites abolishes this effect of RNF152 and enhances the RagA-mediated activation of mTORC1. Ubiquitination by RNF152 generates an anchor on RagA to recruit its inhibitor GATOR1, a GAP complex for Rag GTPases. RNF152 knockout results in the hyperactivation of mTORC1 and protects cells from amino-acid-starvation-induced autophagy. Thus, this study reveals a mechanism for regulation of mTORC1 signaling by RNF152-mediated K63-linked polyubiquitination of RagA.


Subject(s)
Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/physiology , Ubiquitination , Amino Acid Sequence , Animals , Autophagy , Enzyme Activation , HEK293 Cells , Humans , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mice, Knockout , Molecular Sequence Data , Phosphorylation , Protein Transport , Signal Transduction , Tuberous Sclerosis Complex 1 Protein , Tumor Suppressor Proteins/metabolism
17.
Mol Cell Neurosci ; 120: 103727, 2022 05.
Article in English | MEDLINE | ID: mdl-35367590

ABSTRACT

POGZ is a pogo transposable element derived protein with multiple zinc finger domains. Many de novo loss-of-function (LoF) variants of the POGZ gene are associated with autism and other neurodevelopmental disorders. However, the role of POGZ in human cortical development remains poorly understood. Here we generated multiple POGZ LoF lines in H9 human embryonic stem cells (hESCs) using CRISPR/CAS9 genome editing. These lines were then differentiated into neural structures, similar to those found in early to mid-fetal human brain, a critical developmental stage for studying disease mechanisms of neurodevelopmental disorders. We found that the loss of POGZ reduced neural stem cell proliferation in excitatory cortex-patterned neural rosettes, structures analogous to the cortical ventricular zone in human fetal brain. As a result, fewer intermediate progenitor cells and early born neurons were generated. In addition, neuronal migration from the apical center to the basal surface of neural rosettes was perturbed due to the loss of POGZ. Furthermore, cortical-like excitatory neurons derived from multiple POGZ homozygous knockout lines exhibited a more simplified dendritic architecture compared to wild type lines. Our findings demonstrate how POGZ regulates early neurodevelopment in the context of human cells, and provide further understanding of the cellular pathogenesis of neurodevelopmental disorders associated with POGZ variants.


Subject(s)
Human Embryonic Stem Cells , Neural Stem Cells , Transposases , Autistic Disorder/genetics , Cell Differentiation , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Transposases/genetics , Transposases/metabolism
18.
Chem Biodivers ; 20(8): e202300691, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329501

ABSTRACT

Three new compounds, including two new sesquiterpenes (1-2), named Annuumine E-F, and one new natural product, 3-hydroxy-2,6-dimethylbenzenemethanol (3), together with seventeen known compounds (4-20) were isolated from the ethanol extract of the roots of Capsicum annuum L. Among them, five compounds (4, 5, 9, 10 and 20) were isolated from this plant for the first time. The structures of new compounds (1-3) were determined via detailed analysis of the IR, HR-ESI-MS and 1D and 2D NMR spectra. The anti-inflammatory activities of the isolated compounds were evaluated by their ability to reduce NO release by LPS-induced RAW 264.7 cells. Notably, compound 11 exhibited moderate anti-inflammatory activity (IC50 =21.11 µM). Moreover, the antibacterial activities of the isolated compounds were also evaluated.


Subject(s)
Capsicum , Animals , Mice , Capsicum/chemistry , Molecular Structure , RAW 264.7 Cells , Anti-Inflammatory Agents/chemistry , Anti-Bacterial Agents/pharmacology
19.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003726

ABSTRACT

Serum is a common biomaterial in cell culture that provides nutrients and essential growth factors for cell growth. Serum heat inactivation is a common treatment method whose main purpose is to remove complement factors and viruses. As serum contains many heat-labile factors, heat inactivation may affect cell proliferation, migration, differentiation, and other functions. However, the specific mechanism of its effect on cell function has not been studied. Thus, we investigate the exact effects of heat-inactivated FBS on the viability of various cells and explore the possible molecular mechanisms. We treated HCT116, HT-29, and HepG2 cell lines with heat-inactivated (56 °C for 30 min) medium, DMEM, or fetal bovine serum (FBS) for different times (0, 10, 15, 30, 60, or 90 min); we found that heat-inactivated FBS significantly promoted the viability of these cells, whereas DMEM did not have this effect. Moreover, heat-inactivated FBS stimulated cells to produce a small amount of ROS and activated intracellular signaling pathways, mainly the p38/AKT signaling pathway. These results indicate that heat-inactivated FBS may regulate the p38/AKT signaling pathway by promoting the production of appropriate amounts of ROS, thereby regulating cell viability.


Subject(s)
Hot Temperature , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Cell Proliferation , Signal Transduction
20.
J Integr Plant Biol ; 65(8): 1950-1965, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093857

ABSTRACT

The phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro, and the truncated AtMAC protein, N-CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N-CC1(51-154) is the key domain for binding MTs, and N-CC1(51-125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.


Subject(s)
Arabidopsis , Cytokinesis , Cytokinesis/physiology , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism , Arabidopsis/metabolism , Actin Cytoskeleton/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL