Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Cell ; 167(5): 1281-1295.e18, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863244

ABSTRACT

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.


Subject(s)
Glioblastoma/genetics , Glioblastoma/pathology , Neoplasm Invasiveness/genetics , Wnt-5a Protein/genetics , Endothelial Cells/cytology , Endothelial Cells/metabolism , Epigenomics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Humans , Neural Stem Cells/metabolism , PAX6 Transcription Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/metabolism
2.
Nature ; 568(7752): 410-414, 2019 04.
Article in English | MEDLINE | ID: mdl-30918400

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) remains recalcitrant to all forms of cancer treatment and carries a five-year survival rate of only 8%1. Inhibition of oncogenic KRAS (hereafter KRAS*), the earliest lesion in disease development that is present in more than 90% of PDACs, and its signalling surrogates has yielded encouraging preclinical results with experimental agents2-4. However, KRAS*-independent disease recurrence following genetic extinction of Kras* in mouse models anticipates the need for co-extinction strategies5,6. Multiple oncogenic processes are initiated at the cell surface, where KRAS* physically and functionally interacts to direct signalling that is essential for malignant transformation and tumour maintenance. Insights into the complexity of the functional cell-surface-protein repertoire (surfaceome) have been technologically limited until recently and-in the case of PDAC-the genetic control of the function and composition of the PDAC surfaceome in the context of KRAS* signalling remains largely unknown. Here we develop an unbiased, functional target-discovery platform to query KRAS*-dependent changes of the PDAC surfaceome, which reveals syndecan 1 (SDC1, also known as CD138) as a protein that is upregulated at the cell surface by KRAS*. Localization of SDC1 at the cell surface-where it regulates macropinocytosis, an essential metabolic pathway that fuels PDAC cell growth-is essential for disease maintenance and progression. Thus, our study forges a mechanistic link between KRAS* signalling and a targetable molecule driving nutrient salvage pathways in PDAC and validates oncogene-driven surfaceome annotation as a strategy to identify cancer-specific vulnerabilities.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Pinocytosis , Syndecan-1/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Proliferation , Disease Progression , Female , Guanine Nucleotide Exchange Factors/metabolism , Humans , Male , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction
3.
Genes Dev ; 31(23-24): 2337-2342, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29352019

ABSTRACT

SMAD4 constrains progression of Pten-null prostate cancer and serves as a common downstream node of transforming growth factor ß (TGFß) and bone morphogenetic protein (BMP) pathways. Here, we dissected the roles of TGFß receptor II (TGFBR2) and BMP receptor II (BMPR2) using a Pten-null prostate cancer model. These studies demonstrated that the molecular actions of TGFBR2 result in both SMAD4-dependent constraint of proliferation and SMAD4-independent activation of apoptosis. In contrast, BMPR2 deletion extended survival relative to Pten deletion alone, establishing its promoting role in BMP6-driven prostate cancer progression. These analyses reveal the complexity of TGFß-BMP signaling and illuminate potential therapeutic targets for prostate cancer.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Prostatic Neoplasms/physiopathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Animals , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Disease Models, Animal , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genotype , Kaplan-Meier Estimate , Male , Mice , Mice, Inbred C57BL , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , Receptor, Transforming Growth Factor-beta Type II , Smad4 Protein/genetics , Smad4 Protein/metabolism
4.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34253611

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory condition driven by diverse genetic and nongenetic programs that converge to disrupt immune homeostasis in the intestine. We have reported that, in murine intestinal epithelium with telomere dysfunction, DNA damage-induced activation of ataxia-telangiectasia mutated (ATM) results in ATM-mediated phosphorylation and activation of the YAP1 transcriptional coactivator, which in turn up-regulates pro-IL-18, a pivotal immune regulator in IBD pathogenesis. Moreover, individuals with germline defects in telomere maintenance genes experience increased occurrence of intestinal inflammation and show activation of the ATM/YAP1/pro-IL-18 pathway in the intestinal epithelium. Here, we sought to determine the relevance of the ATM/YAP1/pro-IL-18 pathway as a potential driver of IBD, particularly older-onset IBD. Analysis of intestinal biopsy specimens and organoids from older-onset IBD patients documented the presence of telomere dysfunction and activation of the ATM/YAP1/precursor of interleukin 18 (pro-IL-18) pathway in the intestinal epithelium. Employing intestinal organoids from healthy individuals, we demonstrated that experimental induction of telomere dysfunction activates this inflammatory pathway. In organoid models from ulcerative colitis and Crohn's disease patients, pharmacological interventions of telomerase reactivation, suppression of DNA damage signaling, or YAP1 inhibition reduced pro-IL-18 production. Together, these findings support a model wherein telomere dysfunction in the intestinal epithelium can initiate the inflammatory process in IBD, pointing to therapeutic interventions for this disease.


Subject(s)
Inflammatory Bowel Diseases/immunology , Telomere/immunology , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/immunology , Humans , Inflammatory Bowel Diseases/genetics , Interleukin-18/genetics , Interleukin-18/immunology , Intestinal Mucosa/immunology , Mice , Telomerase/genetics , Telomerase/immunology , Telomere/genetics , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/immunology
5.
Nature ; 543(7647): 728-732, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28321130

ABSTRACT

A significant fraction of patients with advanced prostate cancer treated with androgen deprivation therapy experience relapse with relentless progression to lethal metastatic castration-resistant prostate cancer (mCRPC). Immune checkpoint blockade using antibodies against cytotoxic-T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1/programmed cell death 1 ligand 1 (PD1/PD-L1) generates durable therapeutic responses in a significant subset of patients across a variety of cancer types. However, mCRPC showed overwhelming de novo resistance to immune checkpoint blockade, motivating a search for targeted therapies that overcome this resistance. Myeloid-derived suppressor cells (MDSCs) are known to play important roles in tumour immune evasion. The abundance of circulating MDSCs correlates with prostate-specific antigen levels and metastasis in patients with prostate cancer. Mouse models of prostate cancer show that MDSCs (CD11b+Gr1+) promote tumour initiation and progression. These observations prompted us to hypothesize that robust immunotherapy responses in mCRPC may be elicited by the combined actions of immune checkpoint blockade agents together with targeted agents that neutralize MDSCs yet preserve T-cell function. Here we develop a novel chimaeric mouse model of mCRPC to efficiently test combination therapies in an autochthonous setting. Combination of anti-CTLA4 and anti-PD1 engendered only modest efficacy. Targeted therapy against mCRPC-infiltrating MDSCs, using multikinase inhibitors such as cabozantinib and BEZ235, also showed minimal anti-tumour activities. Strikingly, primary and metastatic CRPC showed robust synergistic responses when immune checkpoint blockade was combined with MDSC-targeted therapy. Mechanistically, combination therapy efficacy stemmed from the upregulation of interleukin-1 receptor antagonist and suppression of MDSC-promoting cytokines secreted by prostate cancer cells. These observations illuminate a clinical path hypothesis for combining immune checkpoint blockade with MDSC-targeted therapies in the treatment of mCRPC.


Subject(s)
Immunotherapy/methods , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/therapy , Anilides/pharmacology , Anilides/therapeutic use , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Chimera , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Drug Synergism , Female , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Molecular Targeted Therapy , Myeloid-Derived Suppressor Cells/cytology , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Phosphoinositide-3 Kinase Inhibitors , Prostatic Neoplasms, Castration-Resistant/pathology , Pyridines/pharmacology , Pyridines/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
6.
Nature ; 542(7642): 484-488, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28166537

ABSTRACT

Synthetic lethality and collateral lethality are two well-validated conceptual strategies for identifying therapeutic targets in cancers with tumour-suppressor gene deletions. Here, we explore an approach to identify potential synthetic-lethal interactions by screening mutually exclusive deletion patterns in cancer genomes. We sought to identify 'synthetic-essential' genes: those that are occasionally deleted in some cancers but are almost always retained in the context of a specific tumour-suppressor deficiency. We also posited that such synthetic-essential genes would be therapeutic targets in cancers that harbour specific tumour-suppressor deficiencies. In addition to known synthetic-lethal interactions, this approach uncovered the chromatin helicase DNA-binding factor CHD1 as a putative synthetic-essential gene in PTEN-deficient cancers. In PTEN-deficient prostate and breast cancers, CHD1 depletion profoundly and specifically suppressed cell proliferation, cell survival and tumorigenic potential. Mechanistically, functional PTEN stimulates the GSK3ß-mediated phosphorylation of CHD1 degron domains, which promotes CHD1 degradation via the ß-TrCP-mediated ubiquitination-proteasome pathway. Conversely, PTEN deficiency results in stabilization of CHD1, which in turn engages the trimethyl lysine-4 histone H3 modification to activate transcription of the pro-tumorigenic TNF-NF-κB gene network. This study identifies a novel PTEN pathway in cancer and provides a framework for the discovery of 'trackable' targets in cancers that harbour specific tumour-suppressor deficiencies.


Subject(s)
Chromatin Assembly and Disassembly , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Genes, Essential/genetics , Neoplasms/metabolism , Neoplasms/pathology , PTEN Phosphohydrolase/deficiency , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Chromatin Assembly and Disassembly/genetics , DNA Helicases/chemistry , DNA Helicases/deficiency , DNA Helicases/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/metabolism , Histones/metabolism , Humans , Lysine/metabolism , Male , Methylation , Molecular Targeted Therapy , NF-kappa B/metabolism , Neoplasms/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphorylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proteolysis , Tumor Necrosis Factor-alpha/metabolism , Ubiquitination , beta-Transducin Repeat-Containing Proteins/metabolism
8.
Nature ; 488(7411): 337-42, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22895339

ABSTRACT

Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Genes, Essential/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Molecular Targeted Therapy/methods , Sequence Deletion/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/deficiency , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Chromosomes, Human, Pair 1/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Enzyme Inhibitors , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Genes, Tumor Suppressor , Glioblastoma/pathology , Homozygote , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Mice , Neoplasm Transplantation , Phosphonoacetic Acid/analogs & derivatives , Phosphonoacetic Acid/pharmacology , Phosphonoacetic Acid/therapeutic use , Phosphopyruvate Hydratase/antagonists & inhibitors , Phosphopyruvate Hydratase/deficiency , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , RNA, Small Interfering/genetics , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
10.
Nat Cancer ; 4(1): 62-80, 2023 01.
Article in English | MEDLINE | ID: mdl-36585453

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Myeloid Cells/pathology , Pancreatic Neoplasms/drug therapy , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , Receptors, Interleukin-8A/immunology , Pancreatic Neoplasms
11.
Cancer Res ; 82(17): 3088-3101, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35771632

ABSTRACT

Clinical studies have shown that subsets of patients with cancer achieve a significant benefit from Aurora kinase inhibitors, suggesting an urgent need to identify biomarkers for predicting drug response. Chromodomain helicase DNA binding protein 1 (CHD1) is involved in chromatin remodeling, DNA repair, and transcriptional plasticity. Prior studies have demonstrated that CHD1 has distinct expression patterns in cancers with different molecular features, but its impact on drug responsiveness remains understudied. Here, we show that CHD1 promotes the susceptibility of prostate cancer cells to inhibitors targeting Aurora kinases, while depletion of CHD1 impairs their efficacy in vitro and in vivo. Pan-cancer drug sensitivity analyses revealed that high expression of CHD1 was associated with increased sensitivity to Aurora kinase A (AURKA) inhibitors. Mechanistically, KPNA2 served as a direct target of CHD1 and suppressed the interaction of AURKA with the coactivator TPX2, thereby rendering cancer cells more vulnerable to AURKA inhibitors. Consistent with previous research reporting that loss of PTEN elevates CHD1 levels, studies in a genetically engineered mouse model, patient-derived organoids, and patient samples showed that PTEN defects are associated with a better response to AURKA inhibition in advanced prostate cancer. These observations demonstrate that CHD1 plays an important role in modulating Aurora kinases and drug sensitivities, providing new insights into biomarker-driven therapies targeting Aurora kinases for future clinical studies. SIGNIFICANCE: CHD1 plays a critical role in controlling AURKA activation and promoting Aurora kinase inhibitor sensitivity, providing a potential clinical biomarker to guide cancer treatment.


Subject(s)
Aurora Kinase A , Cell Cycle Proteins , DNA Helicases , DNA-Binding Proteins , Microtubule-Associated Proteins , Prostatic Neoplasms , Animals , Antineoplastic Agents , Aurora Kinase A/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Humans , Male , Mice , Microtubule-Associated Proteins/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology
12.
Nat Aging ; 1(12): 1162-1174, 2021 12.
Article in English | MEDLINE | ID: mdl-35036927

ABSTRACT

Amyloid-induced neurodegeneration plays a central role in Alzheimer's disease (AD) pathogenesis. Here, we show that telomerase reverse transcriptase (TERT) haploinsufficiency decreases BDNF and increases amyloid-ß (Aß) precursor in murine brain. Moreover, prior to disease onset, the TERT locus sustains accumulation of repressive epigenetic marks in murine and human AD neurons, implicating TERT repression in amyloid-induced neurodegeneration. To test the impact of sustained TERT expression on AD pathobiology, AD mouse models were engineered to maintain physiological levels of TERT in adult neurons, resulting in reduced Aß accumulation, improved spine morphology, and preserved cognitive function. Mechanistically, integrated profiling revealed that TERT interacts with ß-catenin and RNA polymerase II at gene promoters and upregulates gene networks governing synaptic signaling and learning processes. These TERT-directed transcriptional activities do not require its catalytic activity nor telomerase RNA. These findings provide genetic proof-of-concept for somatic TERT gene activation therapy in attenuating AD progression including cognitive decline.


Subject(s)
Alzheimer Disease , Telomerase , Mice , Humans , Animals , Alzheimer Disease/genetics , Telomerase/genetics , Amyloid beta-Peptides/metabolism , Cognition , Neurons/metabolism
13.
Cancer Discov ; 10(9): 1374-1387, 2020 09.
Article in English | MEDLINE | ID: mdl-32385075

ABSTRACT

Genetic inactivation of PTEN is common in prostate cancer and correlates with poorer prognosis. We previously identified CHD1 as an essential gene in PTEN-deficient cancer cells. Here, we sought definitive in vivo genetic evidence for, and mechanistic understanding of, the essential role of CHD1 in PTEN-deficient prostate cancer. In Pten and Pten/Smad4 genetically engineered mouse models, prostate-specific deletion of Chd1 resulted in markedly delayed tumor progression and prolonged survival. Chd1 deletion was associated with profound tumor microenvironment (TME) remodeling characterized by reduced myeloid-derived suppressor cells (MDSC) and increased CD8+ T cells. Further analysis identified IL6 as a key transcriptional target of CHD1, which plays a major role in recruitment of immunosuppressive MDSCs. Given the prominent role of MDSCs in suppressing responsiveness to immune checkpoint inhibitors (ICI), our genetic and tumor biological findings support combined testing of anti-IL6 and ICI therapies, specifically in PTEN-deficient prostate cancer. SIGNIFICANCE: We demonstrate a critical role of CHD1 in MDSC recruitment and discover CHD1/IL6 as a major regulator of the immunosuppressive TME of PTEN-deficient prostate cancer. Pharmacologic inhibition of IL6 in combination with immune checkpoint blockade elicits robust antitumor responses in prostate cancer.This article is highlighted in the In This Issue feature, p. 1241.


Subject(s)
DNA-Binding Proteins/metabolism , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , Tumor Escape/genetics , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic/immunology , Humans , Male , Mice, Transgenic , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Smad4 Protein/genetics , Tumor Microenvironment/genetics
14.
Nat Commun ; 11(1): 2124, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32358507

ABSTRACT

Penile squamous cell carcinoma (PSCC) accounts for over 95% of penile malignancies and causes significant mortality and morbidity in developing countries. Molecular mechanisms and therapies of PSCC are understudied, owing to scarcity of laboratory models. Herein, we describe a genetically engineered mouse model of PSCC, by co-deletion of Smad4 and Apc in the androgen-responsive epithelium of the penis. Mouse PSCC fosters an immunosuppressive microenvironment with myeloid-derived suppressor cells (MDSCs) as a dominant population. Preclinical trials in the model demonstrate synergistic efficacy of immune checkpoint blockade with the MDSC-diminishing drugs cabozantinib or celecoxib. A critical clinical problem of PSCC is chemoresistance to cisplatin, which is induced by Pten deficiency on the backdrop of Smad4/Apc co-deletion. Drug screen studies informed by targeted proteomics identify a few potential therapeutic strategies for PSCC. Our studies have established what we believe to be essential resources for studying PSCC biology and developing therapeutic strategies.


Subject(s)
Carcinoma, Squamous Cell/therapy , Immunotherapy/methods , Penile Neoplasms/therapy , Animals , Carcinoma, Squamous Cell/metabolism , Cell Line , Cisplatin/pharmacology , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Myeloid-Derived Suppressor Cells/cytology , Myeloid-Derived Suppressor Cells/metabolism , Penile Neoplasms/metabolism , Proteomics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Tissue Array Analysis , Transcriptome/genetics
15.
Cancer Discov ; 10(4): 608-625, 2020 04.
Article in English | MEDLINE | ID: mdl-32046984

ABSTRACT

A hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant stroma comprised of diverse cell types that enable or suppress tumor progression. Here, we explored the role of oncogenic KRAS in protumorigenic signaling interactions between cancer cells and host cells. We show that KRAS mutation (KRAS*) drives cell-autonomous expression of type I cytokine receptor complexes (IL2rγ-IL4rα and IL2rγ-IL13rα1) in cancer cells that in turn are capable of receiving cytokine growth signals (IL4 or IL13) provided by invading Th2 cells in the microenvironment. Early neoplastic lesions show close proximity of cancer cells harboring KRAS* and Th2 cells producing IL4 and IL13. Activated IL2rγ-IL4rα and IL2rγ-IL13rα1 receptors signal primarily via JAK1-STAT6. Integrated transcriptomic, chromatin occupancy, and metabolomic studies identified MYC as a direct target of activated STAT6 and that MYC drives glycolysis. Thus, paracrine signaling in the tumor microenvironment plays a key role in the KRAS*-driven metabolic reprogramming of PDAC. SIGNIFICANCE: Type II cytokines, secreted by Th2 cells in the tumor microenvironment, can stimulate cancer cell-intrinsic MYC transcriptional upregulation to drive glycolysis. This KRAS*-driven heterotypic signaling circuit in the early and advanced tumor microenvironment enables cooperative protumorigenic interactions, providing candidate therapeutic targets in the KRAS* pathway for this intractable disease.


Subject(s)
Cytokines/metabolism , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cellular Reprogramming/genetics , Humans , Mice , Oncogenes , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Transfection , Tumor Microenvironment
16.
Nat Commun ; 11(1): 4766, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32958778

ABSTRACT

Germline telomere maintenance defects are associated with an increased incidence of inflammatory diseases in humans, yet whether and how telomere dysfunction causes inflammation are not known. Here, we show that telomere dysfunction drives pATM/c-ABL-mediated activation of the YAP1 transcription factor, up-regulating the major pro-inflammatory factor, pro-IL-18. The colonic microbiome stimulates cytosolic receptors activating caspase-1 which cleaves pro-IL-18 into mature IL-18, leading to recruitment of interferon (IFN)-γ-secreting T cells and intestinal inflammation. Correspondingly, patients with germline telomere maintenance defects exhibit DNA damage (γH2AX) signaling together with elevated YAP1 and IL-18 expression. In mice with telomere dysfunction, telomerase reactivation in the intestinal epithelium or pharmacological inhibition of ATM, YAP1, or caspase-1 as well as antibiotic treatment, dramatically reduces IL-18 and intestinal inflammation. Thus, telomere dysfunction-induced activation of the ATM-YAP1-pro-IL-18 pathway in epithelium is a key instigator of tissue inflammation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Inflammation/pathology , Telomere/pathology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Animals , Anti-Bacterial Agents/therapeutic use , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/metabolism , Caspase 1/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Child , Colon/metabolism , Colon/microbiology , Colon/pathology , Gastrointestinal Diseases/pathology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/microbiology , Interleukin-18/genetics , Interleukin-18/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Mutant Strains , Phosphorylation , Protein Precursors/genetics , Protein Precursors/metabolism , Signal Transduction , Telomerase/genetics , Telomerase/metabolism , YAP-Signaling Proteins
17.
Cancer Res ; 78(14): 3823-3833, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29769196

ABSTRACT

Advanced prostate cancer displays conspicuous chromosomal instability and rampant copy number aberrations, yet the identity of functional drivers resident in many amplicons remain elusive. Here, we implemented a functional genomics approach to identify new oncogenes involved in prostate cancer progression. Through integrated analyses of focal amplicons in large prostate cancer genomic and transcriptomic datasets as well as genes upregulated in metastasis, 276 putative oncogenes were enlisted into an in vivo gain-of-function tumorigenesis screen. Among the top positive hits, we conducted an in-depth functional analysis on Pygopus family PHD finger 2 (PYGO2), located in the amplicon at 1q21.3. PYGO2 overexpression enhances primary tumor growth and local invasion to draining lymph nodes. Conversely, PYGO2 depletion inhibits prostate cancer cell invasion in vitro and progression of primary tumor and metastasis in vivo In clinical samples, PYGO2 upregulation associated with higher Gleason score and metastasis to lymph nodes and bone. Silencing PYGO2 expression in patient-derived xenograft models impairs tumor progression. Finally, PYGO2 is necessary to enhance the transcriptional activation in response to ligand-induced Wnt/ß-catenin signaling. Together, our results indicate that PYGO2 functions as a driver oncogene in the 1q21.3 amplicon and may serve as a potential prognostic biomarker and therapeutic target for metastatic prostate cancer.Significance: Amplification/overexpression of PYGO2 may serve as a biomarker for prostate cancer progression and metastasis. Cancer Res; 78(14); 3823-33. ©2018 AACR.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Animals , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Humans , Lymph Nodes/pathology , Male , Mice , Mice, Nude , Neoplasm Grading/methods , Oncogenes/genetics , PC-3 Cells , Transcriptional Activation/genetics , Up-Regulation/genetics , Wnt Signaling Pathway/genetics
18.
Cancer Discov ; 6(1): 80-95, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26701088

ABSTRACT

UNLABELLED: The signaling mechanisms between prostate cancer cells and infiltrating immune cells may illuminate novel therapeutic approaches. Here, utilizing a prostate adenocarcinoma model driven by loss of Pten and Smad4, we identify polymorphonuclear myeloid-derived suppressor cells (MDSC) as the major infiltrating immune cell type, and depletion of MDSCs blocks progression. Employing a novel dual reporter prostate cancer model, epithelial and stromal transcriptomic profiling identified CXCL5 as a cancer-secreted chemokine to attract CXCR2-expressing MDSCs, and, correspondingly, pharmacologic inhibition of CXCR2 impeded tumor progression. Integrated analyses identified hyperactivated Hippo-YAP signaling in driving CXCL5 upregulation in cancer cells through the YAP-TEAD complex and promoting MDSC recruitment. Clinicopathologic studies reveal upregulation and activation of YAP1 in a subset of human prostate tumors, and the YAP1 signature is enriched in primary prostate tumor samples with stronger expression of MDSC-relevant genes. Together, YAP-driven MDSC recruitment via heterotypic CXCL5-CXCR2 signaling reveals an effective therapeutic strategy for advanced prostate cancer. SIGNIFICANCE: We demonstrate a critical role of MDSCs in prostate tumor progression and discover a cancer cell nonautonomous function of the Hippo-YAP pathway in regulation of CXCL5, a ligand for CXCR2-expressing MDSCs. Pharmacologic elimination of MDSCs or blocking the heterotypic CXCL5-CXCR2 signaling circuit elicits robust antitumor responses and prolongs survival.


Subject(s)
Chemokine CXCL5/genetics , Myeloid Cells/immunology , PTEN Phosphohydrolase/deficiency , Prostatic Neoplasms/immunology , Smad4 Protein/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Chemokine CXCL5/metabolism , Disease Progression , Hippo Signaling Pathway , Humans , Male , Mice , Phosphoproteins/genetics , Phosphoproteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Signal Transduction , Transcription Factors , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL