Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 624
Filter
1.
J Cell Mol Med ; 28(1): e18044, 2024 01.
Article in English | MEDLINE | ID: mdl-38140764

ABSTRACT

Breast cancer is the most prevalent cancer worldwide and its incidence increases with age, posing a significant threat to women's health globally. Due to the clinical heterogeneity of breast cancer, the majority of patients develop drug resistance and metastasis following treatment. Ferroptosis, a form of programmed cell death dependent on iron, is characterized by the accumulation of lipid peroxides, elevated levels of iron ions and lipid peroxidation. The underlying mechanisms and signalling pathways associated with ferroptosis are intricate and interconnected, involving various proteins and enzymes such as the cystine/glutamate antiporter, glutathione peroxidase 4, ferroptosis inhibitor 1 and dihydroorotate dehydrogenase. Consequently, emerging research suggests that ferroptosis may offer a novel target for breast cancer treatment; however, the mechanisms of ferroptosis in breast cancer urgently require resolution. Additionally, certain natural compounds have been reported to induce ferroptosis, thereby interfering with breast cancer. Therefore, this review not only discusses the molecular mechanisms of multiple signalling pathways that mediate ferroptosis in breast cancer (including metastasis, invasion and proliferation) but also elaborates on the mechanisms by which natural compounds induce ferroptosis in breast cancer. Furthermore, this review summarizes potential compound types that may serve as ferroptosis inducers in future tumour cells, providing lead compounds for the development of ferroptosis-inducing agents. Last, this review proposes the potential synergy of combining natural compounds with traditional breast cancer drugs in the treatment of breast cancer, thereby suggesting future directions and offering new insights.


Subject(s)
Breast Neoplasms , Ferroptosis , Humans , Female , Apoptosis , Glutamic Acid , Iron , Lipid Peroxidation
2.
J Gene Med ; 26(2): e3666, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38391150

ABSTRACT

BACKGROUND: Proliferation, metabolism, tumor occurrence and development in gliomas are greatly influenced by RNA modifications. However, no research has integrated the four RNA methylation regulators of m6A, m1A, m5C and m7G in gliomas to analyze their relationship with glioma prognosis and intratumoral heterogeneity. METHODS: Based on three in-house single-cell RNA-sequencing (scRNA-seq) data, the glioma heterogeneity and characteristics of m6A/m1A/m5C/m7G-related regulators were elucidated. Based on publicly available bulk RNA-sequencing (RNA-seq) data, a risk-score system for predicting the overall survival (OS) for gliomas was established by three machine learning methods and multivariate Cox regression analysis, and validated in an independent cohort. RESULTS: Seven cell types were identified in gliomas by three scRNA-seq data, and 22 m6A/m1A/m5C/m7G-related regulators among the marker genes of different cell subtypes were discovered. Three m6A/m1A/m5C/m7G-related regulators were selected to construct prognostic risk-score model, including EIFA, NSUN6 and TET1. The high-risk patients showed higher immune checkpoint expression, higher tumor microenvironment scores, as well as higher tumor mutation burden and poorer prognosis compared with low-risk patients. Additionally, the area under the curve values of the risk score and nomogram were 0.833 and 0.922 for 3 year survival and 0.759 and 0.885 for 5 year survival for gliomas. EIF3A was significantly highly expressed in glioma tissues in our in-house RNA-sequencing data (p < 0.05). CONCLUSION: These findings may contribute to further understanding of the role of m6A/m1A/m5C/m7G-related regulators in gliomas, and provide novel and reliable biomarkers for gliomas prognosis and treatment.


Subject(s)
Adenine/analogs & derivatives , Glioma , Single-Cell Gene Expression Analysis , Humans , RNA-Seq , Glioma/genetics , RNA , Tumor Microenvironment/genetics , Mixed Function Oxygenases , Proto-Oncogene Proteins , tRNA Methyltransferases
3.
Biochem Biophys Res Commun ; 696: 149515, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38241815

ABSTRACT

ZNF131 is a Zinc finger protein that acts as a transcription factor with oncogenic effects in multiple cancers. In this study, we aimed to explore the alternative splicing profile of ZNF131 in hepatocellular carcinoma (HCC), its regulatory effects on cell-cycle progression, and the downstream effectors. ZNF131 transcriptional profile and HCC survival analysis were conducted using data from the Cancer Genome Atlas (TCGA)-Liver Hepatocellular Cancer (LIHC) dataset. Chromatin immunoprecipitation (ChIP)-qPCR and dual-luciferase reporter assays were utilized to explore transcriptional regulation. CCK-8, colony formation and xenograft tumor models were used to study HCC tumor growth. Results showed that ZNF131 isoform 2 is upregulated in HCC tissues and its upregulation was associated with unfavorable overall survival (OS) and progression-free interval (PFI). Knockdown of endogenous ZNF131 inhibits HCC cell growth and induces G2/M cell-cycle arrest. ZNF131 binds to the SMC4 promoter by interacting with ZBTB33 and the ZBTB33 recognizing motif. ZNF131 transcriptionally activates SMC4 expression in HCC cells. The tumor-suppressive effects of ZNF131 shRNA could be partially reversed by enforced SMC4 overexpression. In summary, this study highlights the ZNF131/ZBTB33/SMC4 axis as a driver of pathological cell cycling and proliferation in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Cell Line, Tumor , Transcription Factors/metabolism , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Adenosine Triphosphatases/metabolism , Chromosomal Proteins, Non-Histone/metabolism
4.
J Magn Reson Imaging ; 59(1): 58-69, 2024 01.
Article in English | MEDLINE | ID: mdl-37144673

ABSTRACT

Abbreviated MRI (AMRI) protocols rely on the acquisition of a limited number of sequences tailored to a specific question. The main objective of AMRI protocols is to reduce exam duration and costs, while maintaining an acceptable diagnostic performance. AMRI is of increasing interest in the radiology community; however, challenges limiting clinical adoption remain. In this review, we will address main abdominal and pelvic applications of AMRI in the liver, pancreas, kidney, and prostate, including diagnostic performance, pitfalls, limitations, and cost effectiveness will also be discussed. Level of Evidence: 3 Technical Efficacy Stage: 3.


Subject(s)
Liver Neoplasms , Magnetic Resonance Imaging , Male , Humans , Magnetic Resonance Imaging/methods , Abdomen/diagnostic imaging , Liver Neoplasms/diagnosis , Pelvis/diagnostic imaging
5.
Ecol Appl ; 34(1): e2835, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36890673

ABSTRACT

Large-scale water conservancy projects benefit human life but have modified the landscape and provided opportunities for alien plant invasions. Understanding the environmental (e.g., climate), human-related (e.g., population density, proximity to human activities), and biotic (e.g., native plant, community structure) factors driving invasions is essential in the management of alien plants and biodiversity conservation in areas with intense human pressure. To this end, we investigated the spatial patterns of alien plant species distribution in the Three Gorges Reservoir Area (TGRA) of China and distinguished the role of the external environment and community characteristics in determining the occurrence of alien plants with differing levels of known invasion impacts in China using random forest analyses and structural equation models. A total of 102 alien plant species belonging to 30 families and 67 genera were recorded, the majority being annual and biennial herbs (65.7%). The results showed a negative diversity-invasibility relationship and supported the biotic resistance hypothesis. Moreover, percentage coverage of native plants was found to interact with native species richness and had a predominant role in resisting alien plant species. We found alien dominance was mainly the result of disturbance (e.g., changes in hydrological regime), which drove native plant loss. Our results also demonstrated that disturbance and temperature were more important for the occurrence of malignant invaders than all alien plants. Overall, our study highlights the importance of restoring diverse and productive native communities in resistance to invasion.


Subject(s)
Biodiversity , Introduced Species , Humans , Plants , Temperature , Climate , Ecosystem
6.
Helicobacter ; 29(1): e13042, 2024.
Article in English | MEDLINE | ID: mdl-38018403

ABSTRACT

BACKGROUND: It's still controversial whether Helicobacter pylori (H. pylori) eradication can reverse atrophic gastritis (AG) and intestinal metaplasia (IM). Therefore, we performed a meta-analysis to estimate the effect of H. pylori eradication on AG and IM. METHODS: We searched the PubMed, Web of Science and EMBASE datasets through April 2023 for epidemiological studies, which provided mean glandular atrophy (GA) or IM score before and after H. pylori eradication, or provided ORs, RRs or HRs and 95% CIs for the association of AG or IM with H. pylori eradication. Weighted mean difference (WMD) and pooled ORs and 95%CIs were used to estimate the effect of H. pylori eradication on AG and IM. RESULTS: Twenty articles with a total of 5242 participants were included in this meta-analysis. H. pylori eradication significantly decreased GA score in the antrum (WMD -0.36; 95% CI: -0.52, -0.19, p < 0.01), GA score in the corpus (WMD -0.35; 95% CI: -0.52, -0.19, p < 0.01), IM score in the antrum (WMD -0.16; 95% CI: -0.26, -0.07, p < 0.01) and IM score in the corpus (WMD -0.20; 95% CI: -0.37, -0.04, p = 0.01). H. pylori eradication significantly improved AG (pooled OR 2.96; 95% CI: 1.70, 5.14, p < 0.01) and IM (pooled OR 2.41; 95% CI: 1.24, 4.70, p < 0.01). The association remained significant in the subgroup analyses by study design, sites of lesions, regions and follow-up time. Although Publication bias was observed for AG, the association remained significant after trim-and-fill adjustment. CONCLUSIONS: H. pylori eradication could significantly improve AG and IM at early stage.


Subject(s)
Gastritis, Atrophic , Helicobacter Infections , Helicobacter pylori , Humans , Gastritis, Atrophic/pathology , Helicobacter Infections/complications , Atrophy , Metaplasia/complications
7.
Arterioscler Thromb Vasc Biol ; 43(12): 2312-2332, 2023 12.
Article in English | MEDLINE | ID: mdl-37881939

ABSTRACT

BACKGROUND: Carotid atherosclerosis is a chronic inflammatory disorder and is responsible for the vast majority of ischemic strokes. Inappropriate innate and adaptive immune responses synergize with malfunctional vascular wall cells to cause atherosclerotic lesions. Yet, functional characteristics of specific immune and endothelial cell subsets associated with atherosclerosis and cerebrovascular events are poorly understood. METHODS: Here, using single-cell RNA sequencing, the unprecedentedly largest data set from 20 patients' carotid artery plaques and paired peripheral blood mononuclear cells was generated, with which an ultra-high-precision cellular landscape of the atherosclerotic microenvironment involving 372 070 cells was depicted. RESULTS: Compared with peripheral blood mononuclear cells, 3 plaque-specific T-cell subsets exhibiting proatherogenic features of both activation and exhaustion were identified. Strikingly, usually antiatherogenic, CD4+FOXP3+ regulatory T cells from plaques of patients with symptomatic disease acquired proinflammatory properties by probably converting to T helper 17 and T helper 9 cells, while CD4+NR4A1+/C0 and CD8+SLC4A10+ T cells related to cerebrovascular events possessed atherogenic attributes including proinflammation, polarization, and exhaustion. In addition, monocyte-macrophage dynamics dominated innate immune response. Two plaque-specific monocyte subsets performed diametrically opposed functions, EREG+ monocytes promoted cerebrovascular events while C3+ monocytes are anti-inflammatory. Similarly, IGF1+ and HS3ST2+ macrophages with classical proinflammatory M1 macrophage features were annotated and contributed to cerebrovascular events. Moreover, SULF1+ (sulfatase-1) endothelial cells were also found to participate in cerebrovascular events through affecting plaque vulnerability. CONCLUSIONS: This compendium of single-cell transcriptome data provides valuable insights into the cellular heterogeneity of the atherosclerotic microenvironment and the development of more precise cardiovascular immunotherapies.


Subject(s)
Atherosclerosis , Carotid Stenosis , Plaque, Atherosclerotic , Humans , Leukocytes, Mononuclear , Transcriptome , Endothelial Cells/pathology , Monocytes/pathology , Atherosclerosis/pathology , Plaque, Atherosclerotic/pathology , Carotid Stenosis/pathology
8.
Br J Nutr ; 131(8): 1425-1435, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38185814

ABSTRACT

Few studies have evaluated the joint effect of trace elements on spontaneous preterm birth (SPTB). This study aimed to examine the relationships between the individual or mixed maternal serum concentrations of Fe, Cu, Zn, Se, Sr and Mo during pregnancy, and risk of SPTB. Inductively coupled plasma MS was employed to determine maternal serum concentrations of the six trace elements in 192 cases with SPTB and 282 controls with full-term delivery. Multivariate logistic regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) were used to evaluate the individual and joint effects of trace elements on SPTB. The median concentrations of Sr and Mo were significantly higher in controls than in SPTB group (P < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted OR (aOR) of 0·432 (95 CI < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted aOR of 0·432 (95 % CI 0·247, 0·756), 0·386 (95 % CI 0·213, 0·701), 0·512 (95 % CI 0·297, 0·883) and 0·559 (95 % CI 0·321, 0·972), respectively. WQSR revealed the inverse combined effect of the trace elements mixture on SPTB (aOR = 0·368, 95 % CI 0·228, 0·593). BKMR analysis confirmed the overall mixture of the trace elements was inversely associated with the risk of SPTB, and the independent effect of Sr and Mo was significant. Our findings suggest that the risk of SPTB decreased with concentrations of the six trace elements, with Sr and Mo being the major contributors.


Subject(s)
Premature Birth , Trace Elements , Pregnancy , Female , Infant, Newborn , Humans , Case-Control Studies , Bayes Theorem , China/epidemiology
9.
Environ Res ; 253: 119142, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750997

ABSTRACT

Agricultural water resource utilization efficiency in China is facing significant challenges due to the dual constraints of carbon emissions and water pollution. The inefficiency in water usage in agriculture not only impacts the sustainability of water resources but also contributes to environmental degradation through increased carbon emissions and water pollution. Agricultural water resource utilization efficiency under the constraint of carbon emission and water pollution has been a critical issue in China from 2005 to 2022. This study employs the Quantile Autoregressive Distributed Lag (QARDL) method to comprehensively assess and analyze the complex relationship that exists between agricultural water usage, carbon emissions, and water pollution. By analyzing distinct quantiles of the data distribution, the research investigates how different levels of water resource utilization efficiency relate to carbon emissions and water pollution under various conditions. The findings reveal nuanced insights into the dynamic interactions among these components within the agricultural sector. This research project focuses on the efficiency of water resource utilization in agriculture while considering the constraints of carbon emission and water pollution. Given the dynamic and time-dependent character of these components, the QARDL methodology makes it possible to get a detailed knowledge of how they interact within the framework of agriculture. The study aims to give significant insights and policy suggestions to improve agricultural practices while minimizing environmental concerns linked to carbon emissions and water pollution.


Subject(s)
Agriculture , Carbon , Water Resources , China , Carbon/analysis , Water Pollution/analysis
10.
BMC Pregnancy Childbirth ; 24(1): 167, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408952

ABSTRACT

BACKGROUND: The majority of congenital heart diseases (CHDs) are thought to result from the interactions of genetics and the environment factors. This study aimed to assess the association of maternal non-occupational phthalates exposure, metabolic gene polymorphisms and their interactions with risk of CHDs in offspring. METHODS: A multicenter case-control study of 245 mothers with CHDs infants and 268 control mothers of health infant was conducted from six hospitals. Maternal urinary concentrations of eight phthalate metabolites were measured by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Twenty single nucleotide polymorphisms (SNPs) in cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and 19 (CYP2C19), uridine diphosphate (UDP) glucuronosyl transferase family 1 member A7 (UGT1A7), family 2 member B7 (UGT2B7) and B15(UGT2B15) genes were genotyped. The multivariate logistic regressions were used to estimate the association between maternal phthalates exposure or gene polymorphisms and risk of CHDs. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-gene and gene-phthalates exposure interactions. RESULTS: There was no significant difference in phthalate metabolites concentrations between the cases and controls. No significant positive associations were observed between maternal exposure to phthalates and CHDs. The SNPs of UGT1A7 gene at rs4124874 (under three models, log-additive: aOR = 1.74, 95% CI:1.28-2.37; dominant: aOR = 1.86, 95% CI:1.25-2.78; recessive: aOR = 2.50, 95% CI: 1.26-4.94) and rs887829 (under the recessive model: aOR = 13.66, 95% CI: 1.54-121) were significantly associated with an increased risk of CHDs. Furthermore, the associations between rs4124874 (under log-additive and dominant models) of UGT1A7 were statistically significant after the false discovery rate correction. No significant gene-gene or gene-phthalate metabolites interactions were observed. CONCLUSIONS: The polymorphisms of maternal UGT1A7 gene at rs4124874 and rs887829 were significantly associated with an increased risk of CHDs. More large-scale studies or prospective study designs are needed to confirm or refute our findings in the future.


Subject(s)
Heart Defects, Congenital , Maternal Exposure , Phthalic Acids , Female , Humans , Maternal Exposure/adverse effects , Case-Control Studies , Tandem Mass Spectrometry , Prospective Studies , Heart Defects, Congenital/chemically induced , Heart Defects, Congenital/genetics , Polymorphism, Single Nucleotide , Risk Factors
11.
Phytother Res ; 38(1): 82-97, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37807970

ABSTRACT

Ursolic acid (UA) is a naturally occurring pentacyclic triterpenoid widely found in fruits and vegetables. It has been reported that UA has anti-inflammatory effects. However, its efficacy and mechanism of action in the treatment of chronic prostatitis (CP) remain unclear. This study aimed to investigate the efficacy of UA treatment in CP and further explore the underlying mechanism. CP rat and pyroptosis cell models were established in vivo and in vitro, respectively. The efficacy of UA in inhibiting CP was evaluated via haematoxylin-eosin (HE) staining and measurement of inflammatory cytokines. RNA sequencing and molecular docking were used to predict the therapeutic targets of UA in CP. The expression of pyroptosis-related proteins was examined using various techniques, including immunohistochemistry, immunofluorescence, and flow cytometry. UA significantly ameliorated pathological damage and reduced the levels of proinflammatory cytokines in the CP model rats. RNA sequencing analysis and molecular docking suggested that NLRP3, Caspase-1, and GSDMD may be key targets. We also found that UA decreased ROS levels, alleviated oxidative stress, and inhibited p-NF-κB protein expression both in vivo and in vitro. UA improved pyroptosis morphology as indicated by electron microscope and inhibited the expression of the pyroptosis-related proteins NLRP3, Caspase-1, ASC, and GSDMD, reversed the levels of IL-1ß, IL-18, and lactate dehydrogenase in vivo and in vitro. UA can mitigate CP by regulating the NLRP3 inflammasome-mediated Caspase-1/GSDMD pathway. Therefore, UA may be a potential for the treatment of CP.


Subject(s)
Inflammasomes , Prostatitis , Humans , Male , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Ursolic Acid , Pyroptosis/physiology , Caspase 1/metabolism , Prostatitis/drug therapy , Molecular Docking Simulation , Gasdermins , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/pharmacology
12.
J Clin Ultrasound ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662985

ABSTRACT

OBJECTIVE: We aimed to analyze the echocardiographic characteristics and pregnancy outcomes for fetuses with premature complete closure of the fetal ductus arteriosus. METHODS: A retrospective analysis was performed for eight cases of premature ductus arteriosus closure diagnosed by prenatal ultrasonography in the Hunan Maternal and Child Health Hospital from July 2019 to August 2022, and the characteristics of fetal echocardiography and pregnancy outcomes of the eight cases were analyzed and summarized. RESULTS: In all cases, the intima of the ductus arteriosus was thickened and occluded, the ductus arteriosus could be seen with slightly hyperechogenic, and no blood flow signal was found in the ductus arteriosus by Doppler ultrasonography. The right heart was enlarged in seven cases, and the whole heart was enlarged in one case. Tricuspid valve regurgitation was observed to different degrees, of which seven cases were severe and one case was moderate. The pulmonary arteries of eight patients had varying degrees of widening. All eight cases were delivered by cesarean section, and one newborn died after follow-up. The prognosis of the other newborns was good. CONCLUSION: The parameters of prenatal echocardiography are helpful for the prognosis of fetuses with premature closure of the ductus arteriosus. Early prenatal detection, close observation, and clinical guidance can be used to select the right time of delivery.

13.
Facial Plast Surg ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38513709

ABSTRACT

The diagnosis and management of intracapsular condylar fractures (ICFs) are crucial, and if left untreated, they can cause facial asymmetry, limited mouth opening, and even temporomandibular joint (TMJ) ankylosis, which may affect the physical function and mental health of patients. Various procedures have been described for the ICFs, but there is no consensus on the therapeutic methods. This study aimed to compare the clinical efficacy of conservative and surgical management of ICFs.

14.
J Environ Manage ; 351: 119814, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103425

ABSTRACT

Given the growing volume of discarded lithium-ion batteries (LIBs), the extraction and recovery of valuable metals through environmentally-friendly solvent processes have become crucial, but they remain challenging tasks. Deep eutectic solvent (DES), an innovative and green solvents, have demonstrated significant promise in the extraction of valued metal elements from spent LIBs. This work employed a multifunctional DES based on natural molecules dimethyl-beta-propiothetin (DMPT) and ethylene glycol (EG) for the efficient leaching of transition metal ions. Under the reduction effect of EG and the action of carboxyl groups and chloride ions in DMPT, the leaching rate of Li, Ni, Co, and Mn can reach 99.59%, 99.28%, 99.04%, and 99.45%, respectively. Furthermore, DFT calculations were employed to explore the microstructure of DES and its interactions with metal ions. The main active site in the DES molecule is near the chloride ion, and DES binds most strongly to Mn, followed by Co, and weakest to Ni. This work avoids the use of volatile acids and demonstrates great potential in extracting valuable metals, providing a sustainable and environment-friendly alternative for the efficient recycling of waste LIBs.


Subject(s)
Deep Eutectic Solvents , Lithium , Sulfonium Compounds , Chlorides , Metals/chemistry , Electric Power Supplies , Recycling/methods
15.
BMC Oral Health ; 24(1): 23, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178129

ABSTRACT

BACKGROUND: The purpose of this study is to explore the effects of CB2 on bone regulation during orthodontic tooth movement. METHODS: Thirty male mice were allocated into 2 groups (n = 15 in each group): wild type (WT) group and CB2 knockout (CB2-/-) group. Orthodontic tooth movement (OTM) was induced by applying a nickel-titanium coil spring between the maxillary first molar and the central incisors. There are three subgroups within the WT groups (0, 7 and 14 days) and the CB2-/- groups (0, 7 and 14 days). 0-day groups without force application. Tooth displacement, alveolar bone mass and alveolar bone volume were assessed by micro-CT on 0, 7 and 14 days, and the number of osteoclasts was quantified by tartrate-resistant acid phosphatase (TRAP) staining. Moreover, the expression levels of RANKL and OPG in the compression area were measured histomorphometrically. RESULTS: The WT group exhibited the typical pattern of OTM, characterized by narrowed periodontal space and bone resorption on the compression area. In contrast, the accelerated tooth displacement, increased osteoclast number (P < 0.0001) and bone resorption on the compression area in CB2-/- group. Additionally, the expression of RANKL was significantly upregulated, while OPG showed low levels in the compression area of the CB2 - / - group (P < 0.0001). CONCLUSIONS: CB2 modulated OTM and bone remodeling through regulating osteoclast activity and RANKL/OPG balance.


Subject(s)
Bone Remodeling , Bone Resorption , Receptor, Cannabinoid, CB2 , Tooth Movement Techniques , Animals , Male , Mice , Bone Remodeling/physiology , Osteoclasts , Receptor, Cannabinoid, CB2/genetics
16.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1295-1309, 2024 Mar.
Article in Zh | MEDLINE | ID: mdl-38621977

ABSTRACT

The aim of this study was to explore the mechanism of icaritin-induced ferroptosis in hepatoma HepG2 cells. By bioinformatics screening, the target of icariin's intervention in liver cancer ferroptosis was selected, the protein-protein interaction(PPI) network was constructed, the related pathways were focused, the binding ability of icariin and target protein was evaluated by molecular docking, and the impact on patients' survival prognosis was predicted and the clinical prediction model was built. CCK-8, EdU, and clonal formation assays were used to detect cell viability and cell proliferation; colorimetric method and BODIPY 581/591 C1 fluorescent probe were used to detect the levels of Fe~(2+), MDA and GSH in cells, and the ability of icariin to induce HCC cell ferroptosis was evaluated; RT-qPCR and Western blot detection were used to verify the mRNA and protein levels of GPX4, xCT, PPARG, and FABP4 to determine the expression changes of these ferroptosis-related genes in response to icariin. Six intervention targets(AR, AURKA, PPARG, AKR1C3, ALB, NQO1) identified through bioinformatic analysis were used to establish a risk scoring system that aids in estimating the survival prognosis of HCC patients. In conjunction with patient age and TNM staging, a comprehensive Nomogram clinical prediction model was developed to forecast the 1-, 3-, and 5-year survival of HCC patients. Experimental results revealed that icariin effectively inhibited the activity and proliferation of HCC cells HepG2, significantly modulating levels of Fe~(2+), MDA, and lipid peroxidation ROS while reducing GSH levels, hence revealing its potential to induce ferroptosis in HCC cells. Icariin was found to diminish the expression of GPX4 and xCT(P<0.01), inducing ferroptosis in HCC cells, potentially in relation to inhibition of PPARG and FABP4(P<0.01). In summary, icariin induces ferroptosis in HCC cells via the PPARG/FABP4/GPX4 pathway, providing an experimental foundation for utilizing the traditional Chinese medicine icariin in the prevention or treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Flavonoids , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , PPAR gamma , Hep G2 Cells , Models, Statistical , Molecular Docking Simulation , Prognosis , Fatty Acid-Binding Proteins
17.
Neurogenetics ; 24(4): 251-262, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37525067

ABSTRACT

Intellectual disability (ID) is a common neurodevelopmental disorder characterized by significantly impaired adaptive behavior and cognitive capacity. High throughput sequencing approaches have revealed the genetic etiologies for 25-50% of ID patients, while inherited genetic mutations were detected in <5% cases. Here, we investigated the genetic cause for non-syndromic ID in a Han Chinese family. Whole genome sequencing was performed on identical twin sisters diagnosed with ID, their respective children, and their asymptomatic parents. Data was filtered for rare variants, and in silico prediction tools were used to establish pathogenic alleles. Candidate mutations were validated by Sanger sequencing. In silico modeling was used to evaluate the mutation's effects on the protein encoded by a candidate coding gene. A novel heterozygous variant in the ZBTB18 gene c.1323C>G (p.His441Gln) was identified. This variant co-segregated with affected individuals in an autosomal dominant pattern and was not detected in asymptomatic family members. Molecular studies reveal that a p.His441Gln substitution disrupts zinc binding within the second zinc finger and disrupts the capacity for ZBTB18 to bind DNA. This is the first report of an inherited ZBTB18 mutation for ID. This study further validates WGS for the accurate molecular diagnosis of ID.


Subject(s)
Intellectual Disability , Mutation, Missense , Child , Humans , Family , Intellectual Disability/genetics , Intellectual Disability/pathology , Mutation , Pedigree , Proteins/genetics
18.
Anal Chem ; 95(6): 3358-3362, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36723441

ABSTRACT

The development of sensitive, accurate, and conveniently operated methods for the simultaneous assay of two nucleic acids is promising while still challenging. In this work, by using two genes (the N gene and RdRp gene) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as examples, we have designed an ingenious dual-gene-controlled rolling circle amplification (RCA) strategy to propose an accurate and sensitive electrochemical method. Specifically, the coexistence of the two target genes can trigger the RCA reaction to generate a number of repeated G-quadruplex (G4)-forming sequences. These sequences then switch into G4/hemin complexes with redox activity after the incubation of hemin, which can catalyze the TMB/H2O2 substrates to produce significantly enhanced current responses. Experimental results reveal that the proposed method exhibits satisfying feasibility and analytical performance, enabling the sensitive detection of SARS-CoV-2 in the range of 0.1-5000 pM, with the detection limit of 57 fM. Meanwhile, because only the simultaneous existence of the two target genes can effectively trigger the downstream amplification reaction, this method can effectively avoid false-positives and ensure specificity as well as accuracy. Furthermore, our method can distinguish the COVID-19 samples from healthy people, and the outcomes show a satisfying agreement with the results of RT-PCR, manifesting that our label-free dual-gene-controlled RCA strategy exhibits great possibility in clinical application.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Hemin/chemistry , Hydrogen Peroxide , Gene Amplification , Nucleic Acid Amplification Techniques/methods , Biosensing Techniques/methods , Limit of Detection
19.
Anal Chem ; 95(51): 18814-18820, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38079491

ABSTRACT

Uniform covalent organic framework nanoparticles (COF NPs) with a well-defined pore structure may provide a robust platform for scaffolding enzymes. Herein, bipyridine-based spherical COF NPs have been successfully prepared in this work through the Schiff base condensation reaction. Moreover, they are functionalized by metal modification and are further used for biosensor fabrication. Experimental results reveal that the metal-modified COF NPs also display impressive peroxidase-like catalytic activities, while they can load enzymes, such as glucose oxidase (GOx) and sarcosine oxidase (SOx), to develop a cascade catalysis system for design of various kinds of biosensors with very well performance. For example, the optimized GOx@Fe-COFs can achieve a sensitive detection of glucose with a low limit of detection (LOD) of 12.8 µM. Meanwhile, the enzymes also exhibit a commendable preservation of 80% enzymatic activity over a span of 14 days under ambient conditions. This work may pave the way for advancing cascade catalysis and the analysis of different kinds of biological molecules based on COF NPs.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Glucose/analysis , Metal Nanoparticles/chemistry , Peroxidases , Glucose Oxidase/chemistry , Catalysis , Biosensing Techniques/methods
20.
Biol Proced Online ; 25(1): 15, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268878

ABSTRACT

BACKGROUND: Deep learning has been extensively used in digital histopathology. The purpose of this study was to test deep learning (DL) algorithms for predicting the vital status of whole-slide image (WSI) of uveal melanoma (UM). METHODS: We developed a deep learning model (Google-net) to predict the vital status of UM patients from histopathological images in TCGA-UVM cohort and validated it in an internal cohort. The histopathological DL features extracted from the model and then were applied to classify UM patients into two subtypes. The differences between two subtypes in clinical outcomes, tumor mutation, and microenvironment, and probability of drug therapeutic response were investigated further. RESULTS: We observed that the developed DL model can achieve a high accuracy of > = 90% for patches and WSIs prediction. Using 14 histopathological DL features, we successfully classified UM patients into Cluster1 and Cluster2 subtypes. Compared to Cluster2, patients in the Cluster1 subtype have a poor survival outcome, increased expression levels of immune-checkpoint genes, higher immune-infiltration of CD8 + T cell and CD4 + T cells, and more sensitivity to anti-PD-1 therapy. Besides, we established and verified prognostic histopathological DL-signature and gene-signature which outperformed the traditional clinical features. Finally, a well-performed nomogram combining the DL-signature and gene-signature was constructed to predict the mortality of UM patients. CONCLUSIONS: Our findings suggest that DL model can accurately predict vital status in UM patents just using histopathological images. We found out two subgroups based on histopathological DL features, which may in favor of immunotherapy and chemotherapy. Finally, a well-performing nomogram that combines DL-signature and gene-signature was constructed to give a more straightforward and reliable prognosis for UM patients in treatment and management.

SELECTION OF CITATIONS
SEARCH DETAIL