Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Anal Chem ; 95(33): 12339-12348, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37565982

ABSTRACT

Sample preparation involving the cleavage of proteins into peptides is the first critical step for successful bottom-up proteomics and protein analyses. Time- and labor-intensiveness are among the bottlenecks of the commonly used methods for protein sample preparation. Here, we report a fast online method for postinjection acid cleavage of proteins directly in the mobile phase typically used for LC-MS analyses in proteomics. The chemical cleavage is achieved in 0.1% formic acid within 35 s in a capillary heated to 195 °C installed upstream of the analytical column, enabling the generated peptides to be separated. The peptides generated by the optimized method covered the entire sequence except for one amino acid of trastuzumab used for the method development. The qualitative results are extraordinarily stable, even over a long period of time. Moreover, the method is also suitable for accurate and repeatable quantification. The procedure requires only one manual step, significantly decreasing sample transfer losses. To demonstrate its practical utility, we tested the method for the fast detection of ricin. Ricin can be unambiguously identified from an injection of 10 ng, and the results can be obtained within 7-8 min after receiving a suspicious sample. Because no sophisticated accessories and no additional reagents are needed, the method can be seamlessly transferred to any laboratory for high-throughput proteomic workflows.


Subject(s)
Ricin , Chromatography, Liquid/methods , Proteomics/methods , Tandem Mass Spectrometry/methods , Proteins/analysis , Peptides
2.
BMC Infect Dis ; 23(1): 435, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37370005

ABSTRACT

Human adenoviruses (HAdV) are a diverse group of viruses causing a broad range of infections of the respiratory, urogenital and gastrointestinal tracts and keratoconjunctivitis. There are seven species of human adenoviruses with 113 genotypes which may contain multiple genetic variants. This study characterised respiratory human adenoviruses and associated factors in samples collected from selected hospitals in Uganda. A total of 2,298 nasopharyngeal samples were collected between the period of 2008 to 2016 from patients seeking health care at tertiary hospitals for influenza-like illness. They were screened by polymerase chain reaction (PCR) to determine the prevalence of HAdV. HAdV was cultured in A549 cell lines and the hexon gene was sequenced for genotyping. Of the 2,298 samples tested, 225 (9.8%) were adenovirus-positive by PCR. Age was found to be significantly associated with HAdV infections (p = 0.028) with 98% (220/225) of the positives in children aged 5 years and below and none in adults above 25 years of age. The sequenced isolates belonged to species HAdV-B and HAdV-C with most isolates identified as genotype B3. The results showed a high prevalence and genetic diversity in respiratory HAdV circulating in Ugandan population. Deeper genomic characterization based on whole genome sequencing may be necessary to further elucidate possible transmission and impact of current adenovirus-vectored vaccines in Africa.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Tract Infections , Child , Adult , Humans , Infant , Uganda/epidemiology , Sequence Analysis, DNA , Adenovirus Infections, Human/epidemiology , Respiratory Tract Infections/epidemiology , Genotype , Phylogeny
3.
J Proteome Res ; 21(12): 2846-2892, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36355445

ABSTRACT

The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.


Subject(s)
Chromatography, Reverse-Phase , Proteomics , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Mass Spectrometry/methods , Peptides/analysis , Proteomics/methods
4.
Arch Microbiol ; 204(10): 608, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36075991

ABSTRACT

Methane is a greenhouse gas with disastrous consequences when released to intolerable levels. Ruminants produce methane during gut fermentation releasing it through belching and/or flatulence. To better understand the diversity of methanogens and functional enzymes associated with methane metabolism in dairy cows, 48 samples; 6 rumen fluid and 42 dung samples were collected from Kenyan and Tanzanian farms and were analyzed using shotgun metagenomic approach. Statistical analysis for species frequency, relative abundance, percentages, and P values were undertaken using MS Excel and IBM SPSS statistics 20. The results showed archaea from 5 phyla, 9 classes, 16 orders, 25 families, 59 genera, and 87 species. Gut sites significantly contributed to the presence and distribution of various methanogens (P < 0.01). The class Methanomicrobia was abundant in the rumen samples (~ 39%) and dung (~ 44%). The most abundant (~ 17%) methanogen species identified was Methanocorpusculum labreanum. However, some taxonomic class data were unclassified (~ 6% in the rumen and ~ 4% in the dung). Five functional enzymes: Glycine/Serine hydroxymethyltransferase, Formylmethanofuran-tetrahydromethanopterin N-formyltransferase, Formate dehydrogenase, anaerobic carbon monoxide dehydrogenase, and catalase-peroxidase associated with methane metabolism were identified. KEGG functional metabolic analysis for the enzymes identified during this study was significant (P < 0.05) for five metabolism processes. The methanogen species abundances from this study in numbers/kind can be utilized exclusively or jointly as indirect selection criteria for methane mitigation. When targeting functional genes of the microbes/animal for better performance, the concern not to affect the host animal's functionality should be undertaken. Future studies should consider taxonomically categorizing unclassified species.


Subject(s)
Euryarchaeota , Animals , Cattle , Euryarchaeota/metabolism , Female , Kenya , Methane/metabolism , Rumen , Ruminants
5.
BMC Infect Dis ; 21(1): 585, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34134656

ABSTRACT

BACKGROUND: Human coronaviruses are causative agents of respiratory infections with several subtypes being prevalent worldwide. They cause respiratory illnesses of varying severity and have been described to be continuously emerging but their prevalence is not well documented in Uganda. This study assessed the seroprevalence of antibodies against the previously known human coronaviruses prior 2019 in Uganda. METHODS: A total 377 serum samples collected from volunteers that showed influenza like illness in five hospital-based sentinel sites and archived were analyzed using a commercial Qualitative Human Coronavirus Antibody IgG ELISA kit. Although there is no single kit available that can detect the presence of all the circulating coronaviruses, this kit uses a nucleoprotein, aa 340-390 to coat the wells and since there is significant homology among the various human coronavirus strains with regards to the coded for proteins, there is significant cross reactivity beyond HCoV HKU-39849 2003. This gives the kit a qualitative ability to detect the presence of human coronavirus antibodies in a sample. RESULTS: The overall seroprevalence for all the sites was 87.53% with no significant difference in the seroprevalence between the Hospital based sentinel sites (p = 0.8). Of the seropositive, the age group 1-5 years had the highest percentage (46.97), followed by 6-10 years (16.67) and then above 20 (16.36). An odds ratio of 1.6 (CI 0.863-2.97, p = 0.136) showed that those volunteers below 5 years of age were more likely to be seropositive compared to those above 5 years. The seropositivity was generally high throughout the year with highest being recorded in March and the lowest in February and December. CONCLUSIONS: The seroprevalence of Human coronaviruses is alarmingly high which calls for need to identify and characterize the circulating coronavirus strains so as to guide policy on the control strategies.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/epidemiology , Coronavirus , Immunoglobulin G/blood , Adolescent , Adult , Child , Child, Preschool , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Hospitals , Humans , Infant , Male , Sentinel Surveillance , Seroepidemiologic Studies , Uganda/epidemiology , Young Adult
6.
Am J Primatol ; 78(11): 1222-1234, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27331804

ABSTRACT

Infectious diseases pose one of the most significant threats to the survival of great apes in the wild. The critically endangered mountain gorilla (Gorilla beringei beringei) is at high risk for contracting human pathogens because approximately 60% of the population is habituated to humans to support a thriving ecotourism program. Disease surveillance for human and non-human primate pathogens is important for population health and management of protected primate species. Here, we evaluate discarded plants from mountain gorillas and sympatric golden monkeys (Cercopithecus mitis kandti), as a novel biological sample to detect viruses that are shed orally. Discarded plant samples were tested for the presence of mammalian-specific genetic material and two ubiquitous DNA and RNA primate viruses, herpesviruses, and simian foamy virus. We collected discarded plant samples from 383 wild human-habituated mountain gorillas and from 18 habituated golden monkeys. Mammalian-specific genetic material was recovered from all plant species and portions of plant bitten or chewed by gorillas and golden monkeys. Gorilla herpesviral DNA was most consistently recovered from plants in which leafy portions were eaten by gorillas. Simian foamy virus nucleic acid was recovered from plants discarded by golden monkeys, indicating that it is also possible to detect RNA viruses from bitten or chewed plants. Our findings show that discarded plants are a useful non-invasive sampling method for detection of viruses that are shed orally in mountain gorillas, sympatric golden monkeys, and potentially other species. This method of collecting specimens from discarded plants is a new non-invasive sampling protocol that can be combined with collection of feces and urine to evaluate the most common routes of viral shedding in wild primates. Am. J. Primatol. 78:1222-1234, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Epidemiological Monitoring , Gorilla gorilla , Haplorhini , Plants , Viruses , Animals , Feces , Humans
7.
Virol J ; 11: 173, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25273689

ABSTRACT

BACKGROUND: Newcastle disease is still a serious disease of poultry especially in backyard free-range production systems despite the availability of cross protective vaccines. Healthy-looking poultry from live bird markets have been suspected as a major source of disease spread although limited studies have been conducted to ascertain the presence of the virulent strains in the markets and to understand how they are related to outbreak strains. METHODS: This study evaluated the occurrence of Newcastle disease virus in samples collected from poultry in live bird markets across Uganda. The isolates were pathoyped using standard methods (mean death time (MDT), intracelebral pathogenicity index (ICPI), and sequencing of the fusion protein cleavage site motif) and also phylogenetically analysed after sequencing of the full fusion and hemagglutin-neuraminidase genes. The isolates were classified into genotypes and subgenotypes based on the full fusion protein gene classification system and compared with other strains in the region and world-wide. RESULTS: Virulent avian paramyxovirus type I (APMV-1) (Newcastle disease virus) was isolated in healthy-looking poultry in live bird markets. The viruses belonged to a new subgenotype, Vd, in genotype V, and clustered together with Tanzania and Kenya strains. They harbored low genetic diversity. CONCLUSION: The occurrence of virulent AMPV-1 strains in live bird markets may serve as sources of Newcastle disease outbreaks in non-commercial farms.


Subject(s)
Newcastle Disease/virology , Newcastle disease virus/genetics , Animals , Commerce , Evolution, Molecular , Genetic Variation , Molecular Sequence Data , Newcastle Disease/epidemiology , Newcastle disease virus/pathogenicity , Phylogeny , Poultry , Uganda/epidemiology , Virulence
8.
BMC Vet Res ; 10: 50, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24576325

ABSTRACT

BACKGROUND: Avian influenza viruses may cause severe disease in a variety of domestic animal species worldwide, with high mortality in chickens and turkeys. To reduce the information gap about prevalence of these viruses in animals in Uganda, this study was undertaken. RESULTS: Influenza A virus prevalence by RT-PCR was 1.1% (45/4,052) while seroprevalence by ELISA was 0.8% (24/2,970). Virus prevalence was highest in domestic ducks (2.7%, 17/629) and turkeys (2.6%, 2/76), followed by free-living waterfowl (1.3%, 12/929) and swine (1.4%, 7/511). A lower proportion of chicken samples (0.4%, 7/1,865) tested positive. No influenza A virus was isolated. A seasonal prevalence of these viruses in waterfowl was 0.7% (4/561) for the dry and 2.2% (8/368) for the wet season. In poultry, prevalence was 0.2% (2/863) for the dry and 1.4% (24/1,713) for the wet season, while that of swine was 0.0% (0/159) and 2.0% (7/352) in the two seasons, respectively. Of the 45 RT-PCR positive samples, 13 (28.9%) of them were H5 but none was H7. The 19 swine sera positive for influenza antibodies by ELISA were positive for H1 antibodies by HAI assay, but the subtype(s) of ELISA positive poultry sera could not be determined. Antibodies in the poultry sera could have been those against subtypes not included in the HAI test panel. CONCLUSIONS: The study has demonstrated occurrence of influenza A viruses in animals in Uganda. The results suggest that increase in volumes of migratory waterfowl in the country could be associated with increased prevalence of these viruses in free-living waterfowl and poultry.


Subject(s)
Animals, Wild , Anseriformes , Influenza A virus/isolation & purification , Livestock , Animals , Female , Logistic Models , Male , Odds Ratio , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Risk Factors , Seroepidemiologic Studies , Uganda/epidemiology
9.
Microbiol Resour Announc ; 13(1): e0081723, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38078696

ABSTRACT

Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG).

10.
Article in English | MEDLINE | ID: mdl-38982627

ABSTRACT

AIMS: Coxiella burnetii is a highly infectious organism that is easily spread through aerosols causing Q fever in humans. Ticks can harbour and transmit C. burnetii to animals, contributing to disease maintenance. Our aim was to examine the presence of C. burnetii in ticks in Uganda. METHODS AND RESULTS: In this study, ticks were collected from five Ugandan districts and tested by real-time PCR for C. burnetii (Coxiella outer membrane protein 1 gene). A total of 859 tick pools (9602 individual ticks) were tested, and pool positivity for C. burnetii was 5.5% (n = 47). Pooled prevalence differed by district; the highest was Luwero (7.3%), then Gulu (6.6%), and Kasese had the lowest (1.3%). However, district variation was not statistically significant (Fisher's exact = 0.07). Ticks collected from dogs and cats had the highest positivity rates [23/47, (48.9%)] followed by livestock (cattle, goats, sheep, and pigs) [18/47, (38.3%)] and vegetation [6/47, (12.8%)]. Haemaphysalis elliptica had the highest infection rates, followed by Rhipicephalus appendiculatus, Amblyomma variegatum and Rhipicephalus decoloratus had similar prevalence. CONCLUSIONS: Although ticks are not the primary transmitters of C. burnetii to humans, pathogen detection in ticks can be an indirect indicator of risk among animal hosts. Vulnerable populations, including occupations with close animal contact such as farming, butchery, and veterinary practice, have an increased risk of C. burnetii exposure. Veterinarians and clinicians should be aware that C. burnetii may cause human and animal illness in these regions.

11.
Virol J ; 10: 11, 2013 Jan 05.
Article in English | MEDLINE | ID: mdl-23289789

ABSTRACT

BACKGROUND: Influenza B viruses can cause morbidity and mortality in humans but due to the lack of an animal reservoir are not associated with pandemics. Because of this, there is relatively limited genetic sequences available for influenza B viruses, especially from developing countries. Complete genome analysis of one influenza B virus and several gene segments of other influenza B viruses isolated from Uganda from May 2009 through December 2010 was therefore undertaken in this study. METHODS: Samples were collected from patients showing influenza like illness and screened for influenza A and B by PCR. Influenza B viruses were isolated on Madin-Darby Canine Kidney cells and selected isolates were subsequently sequenced and analyzed phylogenetically. FINDINGS: Of the 2,089 samples collected during the period, 292 were positive by PCR for influenza A or B; 12.3% of the PCR positives were influenza B. Thirty influenza B viruses were recovered and of these 25 that grew well consistently on subculture were subjected to further analysis. All the isolates belonged to the B/Victoria-lineage as identified by hemagglutination inhibition assay and genetic analysis except one isolate that grouped with the B-Yamagata-lineage. The Ugandan B/Victoria-lineage isolates grouped in clade 1 which was defined by the N75K, N165K and S172P substitutions in hemagglutinin (HA) protein clustered together with the B/Brisbane/60/2008 vaccine strain. The Yamagata-like Ugandan strain, B/Uganda/MUWRP-053/2009, clustered with clade 3 Yamagata viruses such as B/Bangladesh/3333/2007 which is characterized by S150I and N166Y substitutions in HA. CONCLUSION: In general there was limited variation among the Ugandan isolates but they were interestingly closer to viruses from West and North Africa than from neighboring Kenya. Our isolates closely matched the World Health Organization recommended vaccines for the seasons.


Subject(s)
Influenza B virus/classification , Influenza B virus/genetics , Influenza, Human/epidemiology , Sequence Analysis, DNA , Adolescent , Cell Line , Child , Child, Preschool , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Infant , Influenza B virus/isolation & purification , Influenza, Human/virology , Kidney/virology , Molecular Epidemiology , Molecular Sequence Data , Neuraminidase/genetics , Phylogeny , Polymerase Chain Reaction , Seasons , Uganda/epidemiology , Young Adult
12.
Parasitology ; 140(1): 21-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22948096

ABSTRACT

Changes in population allele frequencies may be driven by several forces, including selection and drift, and are revealed only by sampling over many generations. Such studies, however, are rare for protist parasites. Microsatellite allele frequencies for 4 loci were followed in a population of Plasmodium mexicanum, a malaria parasite of lizards in California USA at 1 site from 1978 to 2010. Rapid turnover of the lizards indicates the parasite was studied for a minimum of 33 transmission cycles and possibly twice that number. Sample sizes ranged from 841 to 956 scored parasite clones per locus. DNA was extracted from frozen dried blood and blood removed from stained blood smears from the earliest years, and a verification study demonstrated DNA from the blood smears provided valid genetic data. Parasite prevalence and effective population size (Ne) dropped after 2000, remaining lower for the next decade. For 2 loci, allele frequencies appeared stable for the first 2 decades of the study, but changed more rapidly after the decline in prevalence. Allele frequencies changed more gradually for the other 2 loci. Genetic drift could account for changes in allele frequencies, especially after the drop in prevalence and Ne, but the force of selection could also have driven the observed patterns.


Subject(s)
Gene Frequency , Microsatellite Repeats/genetics , Plasmodium/genetics , Animals , California/epidemiology , DNA, Protozoan/genetics , Guanine Nucleotide Exchange Factors , Lizards/parasitology , Malaria/epidemiology , Malaria/parasitology , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/parasitology , Prevalence , Proto-Oncogene Proteins , Rho Guanine Nucleotide Exchange Factors
13.
J Pharm Biomed Anal ; 235: 115615, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37566949

ABSTRACT

Radioimmunoconjugates represent a promising class of therapeutics and diagnostics. The characterization of intermediate chelator-antibody products, i.e., without the radionuclide, is frequently omitted, bringing significant uncertainty in the radioimmunoconjugate preparation. In the present study, we explored the utility of reversed-phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography with UV detection to characterize ramucirumab stochastically conjugated with p-SCN-Bn-CHX-A"-DTPA chelator (shortly DTPA). The conjugation was well reflected in RPLC chromatograms, while chromatograms from HILIC were significantly less informative. RPLC analyses at the intact level confirmed that the conjugation resulted in a heterogeneous mixture of modified ramucirumab. Moreover, the RPLC of DTPA-ramucirumab confirmed heterogeneous conjugation of all subunits. The peptide mapping did not reveal substantial changes after the conjugation, indicating that most parts of ramucirumab molecules remained unmodified and that the DTPA chelator was bound to various sites. Eventually, the RPLC method for analysis of intact ramucirumab was successfully applied to online monitoring of conjugation reaction in 1 h intervals for a total of 24 h synthesis, which readily reflected the structural changes of ramucirumab in the form of retention time shift by 0.21 min and increase in peak width by 0.22 min. The results were obtained in real-time, practically under 10 min per monitoring cycle. To the best of our knowledge, our study represents the first evaluation of RPLC and HILIC to assess the quality of intermediates during the on-site preparation of radioimmunoconjugates prior to radiolabeling.


Subject(s)
Chromatography, Reverse-Phase , Immunoconjugates , Chromatography, Reverse-Phase/methods , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions , Chelating Agents , Pentetic Acid , Ramucirumab
14.
Pathogens ; 12(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003798

ABSTRACT

Klebsiella pneumoniae is a threat to public health due to its continued evolution. In this study, we investigated the evolution, convergence, and transmission of hypervirulent and multi-drug resistant (MDR) clones of K. pneumoniae within healthcare facilities in Uganda. There was high resistance to piperacillin (90.91%), cefuroxime (86.96%), ceftazidime (84.62%), cefotaxime (84.00%), amoxicillin/clavulanate (75%), nalidixic acid (73.68%), and nitrofurantoin (71.43%) antibiotics among K. pneumoniae isolates. The isolates were genetically diverse, consisting of 20 different sequence types (STs) and 34 K-serotype groups. Chromosomal fosA (for fosfomycin) and oqxAB efflux pump genes were detected in all isolates. Two carbapenem resistance genes, blaNDM-5 and blaOXA-181 plus extended-spectrum beta-lactamase (blaCTX-M-15) gene (68.12%), quinolone-resistant genes qnrS1 (28.99%), qnrB1 (13.04%), and qnrB6 (13.04%) and others were found. All, except three of the isolates, harbored plasmids. While the isolates carried a repertoire of virulence genes, only two isolates carried hypervirulent genes demonstrating a low prevalence (2.90%) of hypervirulent strains. Our study demonstrated genetically diverse populations of K. pneumoniae, low levels of carbapenem resistance among the isolates, and no convergence of MDR and hypervirulence. Emerging high-risk international pandemic clones (ST11, ST14, ST147, ST 86 and ST307) were detected in these healthcare settings which are difficult to treat.

15.
PLoS One ; 18(11): e0294424, 2023.
Article in English | MEDLINE | ID: mdl-37992119

ABSTRACT

Multi-drug resistant (MDR) globally disseminated extraintestinal pathogenic high-risk Escherichia coli (ExPEC) clones are threatening the gains in bacterial disease management. In this study, we evaluated the genomic structure including the resistome and virulome of the E. coli isolates from extraintestinal infections using whole genome sequencing (WGS). The results highlight that isolates were highly resistant (≥ 90.0%) to commonly used antibiotics (Ampicillin, Trimethoprim-Sulfamethoxazole, Nalidixic acid, and Piperacillin) and were less (<14%) resistant to last resort antibiotics; Imipenem (10.94%) and Meropenem (10.20%). A greater proportion of the E. coli isolates belonged to phylogroup B2 (30.52%) and phylogroup A (27.37%). The sequence types ST131 of phylogroup B2 (21.05%) and ST648 of phylogroup F (9.3%) were the dominant pandemic high-risk clones identified in addition to the ST1193, ST410, ST69, ST38, ST405, and ST10. Many of the isolates were MDR and most (64.58%) carried the blaCTX-M-15 gene for extended-spectrum ß-lactamases. There was a high correlation between phylogroups and the occurrence of both antimicrobial resistance and virulence genes. The cephalosporin-resistance gene blaEC-5 was only found in phylogroup B2 while blaEC-8 and blaEC-19, were only found within phylogroup D and phylogroup F respectively. Aminoglycoside gene (aadA1) was only associated with phylogroups D and C. The isolates were armed with a broad range of virulence genes including adhesins, toxins, secreted proteases, iron uptake genes, and others. The yfcv, chuA, and kpsE genes preferentially occurred among isolates of phylogroup B2. The study underlines the predominance of MDR internationally disseminated high-risk ExPEC clones with a broad range of virulence genes known to be highly transmissible in healthcare and community settings.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Extraintestinal Pathogenic Escherichia coli , Humans , Escherichia coli , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Tertiary Healthcare , Uganda , Pandemics , Genotype , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , beta-Lactamases/genetics , Membrane Transport Proteins/genetics , Escherichia coli Proteins/genetics
16.
Microorganisms ; 11(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37630428

ABSTRACT

Commensal Escherichia coli with broad repertoire of virulence and antimicrobial resistance (AMR) genes pose serious public health risks as reservoirs of AMR and virulence. This study undertook whole genome characterization of commensal E. coli from food-producing animals in Uganda to investigate their genome variability (resistome and virulome). We established that the E. coli had high genomic diversity with 38 sequence types, 24 FimH types, and 33 O-antigen serotypes randomly distributed within three phylogroups (A, B1, and E). A greater proportion (≥93.65%) of the E. coli were resistant to amoxicillin/clavulanate and ampicillin antibiotics. The isolates were AmpC beta-lactamase producers dominated by blaEC-15 (71.88%) and tet(A) (20.31%) antimicrobial resistant genes besides a diverse armory of virulence-associated genes in the class of exotoxin, adhesins, iron uptake, and serine protease autotransporters which varied by host species. Cattle were found to be the major source of E. coli carrying Shiga toxin genes, whereas swine was the main source of E. coli carrying colicin-like Usp toxin gene. The study underscores the importance of livestock as the carrier of E. coli with antimicrobial resistance and a large repertoire of virulence traits with a potential of causing disease in animals and humans by acquiring more genetic traits.

17.
J Med Entomol ; 60(1): 185-192, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36321534

ABSTRACT

Tick-borne diseases (TBDs) pose a significant risk to humans and represent one of the major factors influencing readiness within the United States' military worldwide. Additionally, ticks and TBDs constitute major animal health problems leading to economic losses at multiple levels affecting low- and middle-income countries the hardest. Tick control is frequently hampered by issues ranging from acaricide resistance to lack of data on tick distribution and infection rates. We conducted a cross-sectional study to assess tick species distribution, host use, and rickettsial pathogen infection rate of ticks in different areas of the Uganda Cattle Corridor. We identified 4,425 hard ticks (Ixodida: Ixodidae) comprised of seven species by morphological characters with 3,315 ticks collected from four locations during the dry season and 1,110 ticks from one location during the wet season. Rickettsial pathogen prevalence was assessed in ticks collected from two districts to determine the minimum infection rate compared across seasons, village location, and tick species. We found statistically significant differences in the abundance and distribution of tick species among districts in the dry season, host animal species, and the proportion of rickettsial positive pools between villages. Seasonality, village location, and tick species do not affect the minimum infection rate of rickettsial pathogens of ticks in Uganda, but village location affects the proportion of positive tick pools. These results indicate geographical and seasonal differences among pathogen-harboring ticks contributing to our understanding of the current distribution of ticks and TBDs in Uganda.


Subject(s)
Cattle Diseases , Ixodidae , Rickettsia Infections , Rickettsia , Tick Infestations , Tick-Borne Diseases , Ticks , Humans , Animals , Cattle , Seasons , Uganda/epidemiology , Cross-Sectional Studies , Tick Infestations/epidemiology , Tick Infestations/veterinary , Rickettsia Infections/epidemiology , Rickettsia Infections/veterinary , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Cattle Diseases/epidemiology
18.
Microbiol Resour Announc ; 12(4): e0084022, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36877041

ABSTRACT

We report a genome sequence of Wohlfahrtiimonas chitiniclastica strain MUWRP0946, isolated from a hospitalized patient in Uganda. The genome size was 2.08 million bases, and the genome completeness was 94.22%. The strain carries tetracycline, folate pathway antagonist, ß-lactam, and aminoglycoside antibiotic resistance genes.

19.
Horm Behav ; 61(1): 12-6, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21983237

ABSTRACT

Previous studies have shown that women with higher maternal tendencies are shorter and have lower testosterone levels than those with lower maternal tendencies. Here we report two studies that investigated the relationships between maternal tendencies and two further measures of physical masculinization/feminization; urinary estrogen metabolite (estrone-3-glucuronide: E1-3G) levels (Study 1) and rated facial femininity (Study 2). In Study 1, nulliparous women reported both their ideal number of children and ideal own age at first child and also provided urine samples. There was a significant positive correlation between measured late-follicular estrogen levels and reported ideal number of children. In Study 2, analyses of facial cues in two independent samples of women showed that the average facial characteristics of women who reported desiring many children were rated as more feminine than those desiring fewer children. Collectively, these results support the proposal that maternal tendencies are related to physical feminization and that this effect may, at least in part, reflect the influence of the hormone estrogen.


Subject(s)
Estrone/analogs & derivatives , Face/physiology , Femininity , Maternal Behavior/physiology , Adolescent , Estrone/physiology , Estrone/urine , Family Characteristics , Female , Humans , Young Adult
20.
Micromachines (Basel) ; 13(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36014109

ABSTRACT

The production method of nanoscale detonation carbon (NDC) has recently been developed at Lavrentyev Institute of Hydrodynamics SB RAS. This method uses the reaction of acetylene with oxygen conducted in the detonation mode in fuel-rich acetylene-oxygen mixtures. The morphology and structural features of the NDC particles can be varied by changing the concentration of oxygen in the gaseous mixtures. The particles of NDC can serve as reinforcements in metal matrix composites and additives imparting electrical conductivity to polymer matrix composites. Before NDC can be considered for industrial applications, it is necessary to address the related biological safety concerns. The present work was aimed at determining the cytotoxicity of NDC. The NDC powders with two morphologies (obtained using different acetylene/oxygen ratios) were tested on HEK293A human cells. The NDC powder was added to the culture medium in concentrations ranging from 10 ng/mL to 400 µg/mL. The cell viability was determined by a colorimetric EZ4U test and a real-time cell analyzer xCELLigence. None of the NDC samples showed a cytotoxic effect. The results of this study allow us to recommend NDC as a safe and useful product for the development of advanced carbon-based and composite materials.

SELECTION OF CITATIONS
SEARCH DETAIL